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Thermoelectric transport of mesoscopic conductors coupled to voltage and thermal probes

David Sánchez and Llorenç Serra
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We investigate the basic properties of the thermopower (Seebeck coefficient) of phase-coherent conductors
under the influence of dephasing and inelastic processes. Transport across the system is caused by a voltage
bias or a thermal gradient applied between two terminals. Inelastic scattering is modeled with the aid of an
additional probe acting as an ideal potentiometer and thermometer. We find that inelastic scattering reduces
the conductor’s thermopower and, more unexpectedly, generates a magnetic field asymmetry in the Seebeck
coefficient. The latter effect is shown to be a higher-order effect in the Sommerfeld expansion. We discuss our
result by using two illustrative examples. First, we consider a generic mesoscopic system described within random
matrix theory and demonstrate that thermopower fluctuations disappear quickly as the number of probe modes
increases. Second, the asymmetry is explicitly calculated in the quantum limit of a ballistic microjunction. We
find that asymmetric scattering strongly enhances the effect and discuss its dependence on temperature and Fermi
energy.
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Introduction. Recent advances in heat measurements have
enabled to envisage promising thermoelectric applications at
the mesoscale.1 In particular, there have been a number of pro-
posals ranging from thermal analogs of electronic rectifiers2

and transistors3 to efficient converters of heat into electricity4

which can be shown to reach optimized configurations.5

Of fundamental importance is the experimental verification
of the carriers’ charge sign using thermopower techniques
only.6

Since these devices operate at the quantum regime of
transport, it is of primary interest to investigate dephasing
effects which may be detrimental to their performance.
Additionally, energy flow at finite temperature is expected
to be particularly sensitive to inelastic transitions inside the
sample due, e.g., to coupling to phonons. This problem has
been addressed only very recently.7,8

A convenient way to introduce dephasing and energy
relaxation in a mesoscopic conductor is based on the voltage
probe model.9 A fictitious terminal is attached to the sample
such that the net current flowing through the probe is set to
zero. Hence, a carrier absorbed by the probe is reemitted into
the conductor with an unrelated phase. The clear advantage
of this approach lies in its simplicity and its independence on
the microscopic details of the phase-randomizing processes.
Therefore, universal properties of generic conductors can be
investigated this way.10,11 The model has been recently applied
to find the temperature and chemical potential profiles of an
array of quantum dots.12

Including a third terminal acting as a dephasing probe
requires to extend the scattering approach to the multiterminal
case. For thermoelectric transport, this was achieved by
Butcher.13 Experimentally, there are already available data
for paradigmatic mesoscopic systems such as two-terminal
point contacts14 and chaotic cavities.15 The multiterminal case,
however, has been less explored. A very recent exception is
Ref. 16, where a voltage drop is generated transversally to a
horizontal thermal gradient in a four-terminal setup with an
asymmetric scatterer.

Here we investigate incoherent scattering effects on the
thermopower (Seebeck coefficient S), defined at linear re-
sponse as the ratio of voltage �V to temperature �θ

differences applied between two terminals (1 and 2 in Fig. 1)
at vanishing current I ,

S ≡ �V

�θ

∣∣∣∣
I=0

, (1)

in the presence of an attached probe (terminal 3 in Fig. 1) acting
as an ideal potentiometer and thermometer. Quite generally,
we find that S decreases as compared to the case without the
probe and, strikingly, the presence of incoherent scattering
due to the probe causes the development of a magnetic
field asymmetry in S. To illustrate our findings, we analyze
(i) a mesoscopic conductor with generic properties (a chaotic
cavity) and (ii) a ballistic wire in the quantum limit (a few
propagating modes) with an asymmetric scatterer. In the latter
case, we explicitly calculate the size of the magnetoasymmetry.
This result is relevant in view of recent predictions that
relate this asymmetry to the efficiency limits of thermal
devices in converting a temperature gradient into electrical
work.17,18

Model. We consider a mesoscopic conductor coupled to
three terminals. Thermoelectric transport is described by the
electric current Iα and the heat current Qα flowing from
terminal α = 1,2,3. In the linear response regime, the transport
equations read

Iα =
∑

β

GαβVβ +
∑

β

Lαβθβ, (2)

Qα =
∑

β

MαβVβ +
∑

β

Kαβθβ, (3)

where eVα = EF − μα are voltage shifts away from the
common Fermi energy EF , with μα the electrochemical
potential of lead α, while θα = θ − Tα measures deviations
of the reservoir temperature Tα from the common (bath)
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FIG. 1. Sketches of (a) a chaotic cavity attached to voltage and
thermal reservoirs and (b) a microjunction with an asymmetric
scatterer coupled to a probe as a model of a quantum wire with
incoherent scattering.

temperature θ . The transport coefficients are expressed in
terms of the transmission probability Tαβ :

Gαβ = −gV

∫
dE(Nαδαβ − Tαβ)f ′

0, (4)

Lαβ = −gV

eθ

∫
dE(E − EF )(Nαδαβ − Tαβ)f ′

0, (5)

Mαβ = −θLαβ, (6)

Kαβ = gV

e2θ

∫
dE(E − EF )2(Nαδαβ − Tαβ)f ′

0, (7)

with gV = 2e2/h the conductance quantum, Nα the number of
propagating channels in lead α, and f ′

0 the energy derivative of
the Fermi distribution function evaluated at Vα = θα = 0. In
Eq. (6) we have used the Onsager reciprocity relations between
cross terms.

Isothermal case. We first consider the case where the
temperature probe is an externally fixed parameter. This would
correspond, e.g., to a phonon subsystem maintained at a
different temperature.8 The probe thus works as an ideal
voltmeter with voltage V3 determined from the condition
I3 = 0,

V3 = G31V1 + G32V2

G31 + G32
+ L31

G31 + G32
(θ1 − θ3)

+ L32

G31 + G32
(θ2 − θ3). (8)

We substitute Eq. (8) into the expression for I1, from which
we find the current I = I1 = −I2 flowing through the system:

−I = gV12 + L12θ12 + L13θ13

− G13

G31 + G32
[L31θ13 + L32θ23]. (9)

I is a function of voltage Vij = Vi − Vj (i,j = {1,2,3})
and temperature θij = θi − θj differences, as should be. In
Eq. (9), −g = G12 + G13G32/(G31 + G32) is the well-known
expression for the conductance in the presence of a voltage
probe in the purely electric case for which all temperature
shifts are set to zero.9

In the isothermal configuration, the probe is maintained
at the same temperature as the common bath (θ3 = 0). We
are then free to specify the precise form of the tempera-
ture gradient θ1 − θ2 �= 0. We choose the symmetric bias
θ1 = −θ2 = �θ/2, which is commonly employed in actual

measurements.16 We then compute the thermopower from
Eq. (1) for V1 − V2 = �V :

S = 1

g

[
L12 + 1

2
L13 + 1

2

G13

G31 + G32
(L32 − L31)

]
. (10)

Equation (10) shows two contributions to the thermopower
as compared to the case without phase randomization for
which S = −L12/G12. The first part corresponds to direct
inelastic scattering with the probe and is proportional to
the term L13, as can be expected from an analogy with the
purely electric case (cf., g above). The second part is more
surprising—it is nonzero only if there is an asymmetry between
the transmissions into the probe of those carriers injected from
lead 1 and lead 2 (L32 �= L31). This term has no counterpart in
the purely electric case. A similar asymmetry effect, but with
phonon carriers, has been recently shown to be crucial in the
development of rectification effects in dielectric junctions.19

Adiabatic case. More interesting is the case when the
probe plays simultaneously the role of an ideal potentiometer
and thermometer. Then, not only the charge current but also
the energy flux is zero at the probe. These two conditions
determine V3 and θ3.20 Recently, it has been suggested that
electronic local temperatures can be consistently defined
introducing thermal probes.21

Imposing I3 = 0 and Q3 = 0, we find

V32 = − (G31K33 + θL31L33)V12 + (L31K33 − K31L33)θ12

G33K33 + θL2
33

,

(11)

θ32 = − (G33K31 + θL31L33)θ12 + (G31L33 − L31G33)θV12

G33K33 + θL2
33

,

(12)

which we substitute in the equation I1 = 0 in order to obtain
the thermopower S = �V/�θ = V12/θ12,

S = [G13(L31K33 − K31L33) + G33(L13K31 − L11K33)

+ θL33(L13L31 − L11L33)]/[θL33(G11L33 − G31L13)

+G33(θL13L31 + G11K33) − G13(G31K33 + θL31L33)].

(13)

Chaotic cavity. We now consider a generic mesoscopic
sample—a metallic quantum dot whose classical analog dis-
plays chaotic dynamics [see Fig. 1(a)]. Its isotropic properties
permits us to treat the cavity as an effectively zero-dimensional
object characterized with a mean level spacing δ. Transport
occurs when the cavity is coupled to external reservoirs usually
via quantum point contacts with a large number (N1 and N2)
of propagating channels. The experimentally relevant case
deals with clean samples.22 As a consequence, transport is
ballistic and its corresponding statistics is well described by
random matrix theory (RMT).23 In what follows, we assume
eVα,kBθα < ET , with ET = (N1 + N2)δ the Thouless energy.

Using a Sommerfeld expansion, one finds approximate ex-
pressions for the response coefficients in Eqs. (4)–(7) in terms
of the transmission functions Tαβ and their energy derivatives
T ′

αβ evaluated at the Fermi level: Gαβ = gV (Nαδαβ − Tαβ),
Lαβ = gθT

′
αβ , and Kαβ = −gθ (Nαδαβ − Tαβ)/e, where gθ =

(2e/h)(π2k2
Bθ/3). Note that the ratio θgV /egθ = π2k2

B/3
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depends on universal constants only, representing the fun-
damental quantum of thermal conductance of a perfectly
transmitting mode with averaged reservoir temperature θ .24

We investigate the statistical properties of the thermopower,
in particular, its mean value and variance. In the limit
Nα � 1 we can calculate correlations of Tαβ and T ′

αβ within
RMT. We consider the cases β = 1 (orthogonal ensemble)
and β = 2 (unitary ensemble) corresponding, respectively,
to the presence and the absence of time-reversal symmetry.
We define the functions Aμν = NμNν/N

2
t − δμνNμ/Nt and

Bρσ = √
2(NρNσ/N3

t − δρσNρ/N
2
t ), where μ,ν,ρ,σ are lead

indices and Nt is the total number of modes. Then, using
Ref. 25, we derive the useful relations

〈Tμν〉 = δμνNμ − NμNν/Nt + δβ1Aμν, (14)

〈T ′
μν〉 = 0, (15)

〈TμνTρσ 〉 = AμρAνσ + δβ1AμσAνρ, (16)

〈T ′
μνT

′
ρσ 〉 = BμρBνσ + δβ1BμσBνρ. (17)

From Eq. (15) we immediately see that the mean vanishes,
〈S〉 = 0. This result was found in Ref. 26 for the case without
dephasing. The reason is clear: The L coefficients are functions
of the energy derivative of the scattering matrix, but this is
zero on average (the derivative can be positive or negative for
a specific sample of the ensemble but fluctuates on average
at around zero). The fluctuations are described by var S =
〈S2〉 − 〈S〉2, which are generally nonzero. For definiteness,
we set N1 = N2 = N . Then, the thermopower fluctuations for
both the isothermal and adiabatic cases are governed by the
same expression:

var S = 8π6k4
Bθ2

9e2δ2

1 + δβ1

(2N + N3)4
. (18)

Our result generalizes the thermopower fluctuations to the case
of finite dephasing. Note that the fluctuations are not universal
and vanish quickly as the mode number increases. Strikingly,
the same functional dependence (N−4) appears in the magne-
toasymmetry of the weakly nonlinear conductance27 since it
also depends on the energy derivative of the transmission. The
fluctuations are twice larger in the absence of magnetic field.
Importantly, incoherent scattering effects reduce drastically
the fluctuations of S since these have a quantum origin
and the probe introduces decoherence in the system. To
leading order, one has (var S − var SN3=0)/var SN3=0 = 1 −
2N3/N + O(N3)2.

In the adiabatic case, we have neglected in S terms that do
not contribute to the variance (e.g., terms that involve three
L’s are of higher order). Then, Eq. (13) can be approximated
as

S 	 1

g

[
L12 + G32L13

G31 + G32
+ G13(G31L32 − G32L31)

(G31 + G32)2

]
.

(19)

Since for symmetric couplings (N1 = N2 = N ) the prefactors
of Lαβ in Eq. (19) are, on the ensemble average, equal to
those of the isothermal case [Eq. (10)], we obtain the same
expression for var S. Thus, only asymmetric couplings (N1 �=
N2) could distinguish between the two cases.

Magnetic field asymmetry. In a two-terminal conductor, the
linear conductance is an even function of the applied magnetic
field B. This fundamental symmetry remains unchanged
even after elimination of the probe coupled to a mesoscopic
conductor since g(B) = g(−B). This can be seen by recasting
g as g = G11 − G13G31/G33, which is manifestly symmetric
under B reversal. In contrast, while the two-terminal ther-
mopower S = −L11/G11 is manifestly an even function of
B, this statement does not hold in the presence of a probe in
the adiabatic case.18 From Eq. (13) we find the thermopower
magnetoasymmetry � = S(B) − S(−B):

� = [G33(L13K31 − L31K13) + L33(G31K13 − G13K31)

+K33(G13L31 − G31L13)]/[θL33(G11L33 − G31L13)

+G33(θL13L31 + G11K33)

−G13(G31K33 + θL31L33)], (20)

which is generally nonzero. Then, incoherent asymmetry
changes the symmetry of the Seebeck coefficient.

We recall that the leading order in a Sommerfeld expansion
reads Kαβ 	 −(π2k2

Bθ/3e2)Gαβ . Substituting in Eq. (20),
one finds � = 0. As a consequence, B asymmetries in the
thermopower are a higher-order effect. This implies that the
size of � will decrease quickly as temperature decreases
[typically, as θ3 (Ref. 28)]. The leading-order Sommerfeld
approximation neglects terms of order (kBθ/EF )4.29 This
factor is rather small in macroscopic metals and it is thus not
necessary to consider higher orders. But in low-dimensional
systems the B asymmetry of S should be visible since
EF and θ can be of the same order. We note in passing

θ

Φ
   

10
−2

θ

Φ
   

10
−2

FIG. 2. (Color online) Numerical results for the thermopower
(a),(b) and thermopower B asymmetry (c),(d) of a microjunction with
an asymmetric scatterer [Fig. 1(b)] as a function of Fermi energy
(a),(c) and temperature (b),(d). Solid (open) symbols correspond
to the presence (absence) of the voltage and thermal probe. Solid
(dashed) lines in (b) are obtained using the Sommerfeld expansion
to lowest order with (without) the probe. Note the strong deviation
at moderately low temperatures. Solid line in (d) shows the � ∝ θ3

dependence of the B asymmetry at low temperature. Parameters:
Magnetic length h̄c/eB = L2, temperature kBθ = h̄2/mL2 [(a),(c)],
and Fermi energy EF = 10h̄2/mL2 [(b),(d)].
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DAVID SÁNCHEZ AND LLORENÇ SERRA PHYSICAL REVIEW B 84, 201307(R) (2011)

that the conductance g is, in contrast, always B symmetric,
independently of the Sommerfeld approximation.

Numerical simulations. Clearly, for a chaotic cavity the
thermopower magnetoasymmetry vanishes on average. More-
over, we expect the fluctuations to be exceedingly small since
� depends, to leading order in θ , on the second derivative of
the transmission. Therefore, it is more natural to estimate the
size of � in a different mesoscopic system—a microjunction
as in Fig. 1(b). Thermopowers yielding 0.6 μV/K have been
recently detected in a similar setup.16 The asymmetric scatterer
deflects the electronic trajectories differently depending on the
B direction. Therefore, we expect an asymmetry in S when B

is inverted.
Our prediction is confirmed by the numerical calculations

of Fig. 2. We compute Tαβ(E) using a grid discretization of the
Schrödinger equation and, subsequently, the response coeffi-
cients from Eqs. (4)–(7) with Gauss-Legendre quadratures.28

The upper panels show that adding the voltage and thermal
probe reduces the thermopower absolute value as a function
of both EF and θ , in agreement with our previous results.
In Fig. 2(b) we show that S deviates from the lowest-order
Sommerfeld expansion as temperature increases both with
and without the probe. We emphasize that the thermopower
is B asymmetric only if the probe is present, as shown in

Figs. 2(c) and 2(d). In Fig. 2(d) we plot the asymmetry � as a
function of temperature and show that � increases as θ3 at low
temperature. The maximum value of � depends on the details
of the scatterer and the system’s parameters. We find that �

can reach values as high as 2% for Fermi energies close to the
activation of the second mode EF 	 19.7h̄2/mL2.

Conclusions. To summarize, we have investigated inco-
herent scattering effects on the thermoelectric transport of
a mesoscopic conductor using a fictitious probe acting as
an ideal potentiometer and thermometer. Our main findings
are as follows: (i) a general expression for the quantum
fluctuations of the Seebeck coefficient upon elimination of
the probe valid for both isothermal and adiabatic probes, and
(ii) a magnetic field asymmetry of the thermopower, requir-
ing both inelastic and dephasing processes, which becomes
apparent only when higher-order terms are considered in a
Sommerfeld expansion. Odd-in-B thermopowers in Andreev
interferometers have been experimentally observed30 and the-
oretically studied.31 We hope that our results will motivate the
experimental detection of asymmetric thermopowers in normal
systems.
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