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Summary

High-resolution observations of solar filaments and prominences reveal that these
large-scale coronal structures are formed by a myriad of long and thin ribbons, here
called threads, which are piled up to form the prominence body. Evidences suggest that
these fine structures are magnetic flux tubes anchored in the solar photosphere, which
are partially filled with the cool and dense prominence material.

Individual and collective oscillations of prominence and filament fine structures are
frequently reported by means of oscillatory variations in Doppler signals and spectral
line intensity. Common features of these observations are that the reported oscillatory
periods are usually in a narrow range between 2 and 10 minutes, that the velocity am-
plitudes are smaller than ∼ 3 km s−1, and that the oscillations seem to be strongly
damped after a few periods. Typically, the ratio of the damping time, τD, to the period,
P , is τD/P < 10. While the oscillations have been interpreted in the context of the
magnetohydrodynamic (MHD) theory, i.e., in terms of the MHD normal modes sup-
ported by the filament thread body and/or propagating MHD waves, the mechanism or
mechanisms responsible for the damping are not well-known and a comparative study
between different damping mechanisms is needed.

In this Thesis, we study the efficiency of several physical mechanisms for the damping
of MHD oscillations in prominence fine structures. Both individual and collective os-
cillations of threads are analyzed. We model a filament thread as a straight cylindrical
magnetic flux tube with prominence conditions, embedded in a magnetized environ-
ment representing the solar coronal medium. The basic MHD equations are applied
to the model and contain non-ideal terms accounting for effects as, e.g., non-adiabatic
mechanisms, magnetic diffusion, ion-neutral collisions, etc., that may be of relevance in
prominence plasmas and whose role on the damping of the oscillations is assessed. Our
method combines analytical treatments along with numerical computations to obtain
the frequency and the perturbations of the linear MHD modes.

Among the studied mechanisms, we find that the most efficient one for the damping
of transverse thread oscillations, interpreted as kink MHD modes, is the process of
resonant absorption in the Alfvén continuum. The efficiency of resonant absorption is
independent of the plasma ionization degree and is consistent with the reported values
of τD/P . Thermal effects, as well as magnetic diffusion, are irrelevant for the damping
of transverse oscillations. Regarding longitudinal oscillations, i.e., slow MHD modes,
radiative losses from the prominence plasma and ion-neutral collisions are the processes
that provide the smallest damping times. Their combined effect causes an efficient
attenuation of slow modes in filament threads, with τD/P compatible with the observed
values. Finally, Alfvén waves are also investigated, and we obtain that they are damped
by ion-neutral collisions. However, the damping of Alfvén waves is not very efficient
because the theoretical damping times are between one and two orders of magnitude
larger than the corresponding periods. All these conclusions apply for both individual
and collective oscillations of threads.

Our conclusions shed some light on the problem of the attenuation of prominence os-
cillations, since we identify some candidates which may be responsible for the damping.
The present results allow subsequent studies of MHD waves in prominences to neglect
some irrelevant mechanisms. On the contrary, those important effects pointed out here
should be investigated in more detail, and more complicated models representing promi-
nence fine structures should be considered in the near future.
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SUMMARY

Resum en català

Observacions de protuberàncies i filaments solars en alta resolució mostren que aquests
fenòmens coronals de gran escala estan formats per un conjunt d’estructures fines, llargues i
primes, que aqúı anomenam fibres, les quals s’apil·len per tal de formar el cos de la protuberància.
Les evidències suggereixen que aquestes fibres son tubs de flux magnètic arrelats a la fotosfera
solar, els quals estàn parcialment plens amb el material fred i dens de la protuberància.

Les oscil·lacions individuals i col·lectives d’estructures fines de filaments i protuberàncies
solars són freqüentment detectades mitjançant variacions oscil·latòries en senyals Doppler i en
la intensitat de ĺınies espectrals. Caracteŕıstiques comunes d’aquestes observacions són que els
periodes d’oscil·lació obtinguts estan normalment dins un intèrval estret d’entre 2 i 10 minuts,
que les amplituds de les velocitats són menors de ∼ 3 km s−1 i que les oscil·lacions pareixen
estar fortament esmortëıdes després de pocs periodes. T́ıpicament, el quocient entre el temps
d’esmortëıment, τD, i el periode, P , és τD/P < 10. Mentre que les oscil·lacions s’han interpretat
dins el context de la Teoria Magnetohidrodinàmica (MHD), és a dir, en termes dels modes nor-
mals MHD suportats per la fibra de filament i/o ones MHD que es propaguen, el mecanisme o els
mecanismes responsables de l’esmortëıment no són ben coneguts i encara estan sent investigats.
És necessari un estudi comparatiu entre mecanismes d’esmortëıment diferents.

En aquesta Tesi, estudiam l’eficiència de varis mecanismes f́ısics per a l’esmortëıment d’oscil-
lacions MHD en estructures fines de protuberància. S’analitzen tant oscil·lacions de fibres in-
dividuals com col·lectives. Modelam una fibra de filament com un tub de flux magnètic, recte
i ciĺındric, amb plasma amb condicions de protuberància, immers en un entorn magnetitzat
que representa el medi de la corona solar. Les equacions bàsiques de la MHD s’apliquen al
model i contenen termes no ideals que tenen en compte efectes com, per exemple, mecanismes
no adiabàtics, difusió magnètica, col·lisions entre ions i neutres, etc., que podrien ser rellevants
en plasmes de protuberàncies i el paper dels quals sobre l’esmortëıment de les oscil·lacions es
determina. El nostre mètode combina tractaments anaĺıtics juntament amb càlculs numèrics per
a obtenir la freqüència i les pertorbacions dels modes MHD lineals.

D’entre els mecanismes estudiats, trobam que el més eficient per a l’esmortëıment de les
oscil·lacions transversals de fibres, interpretades com modes kink (de doblec) MHD, és el procés
d’absorció ressonant en el continu d’Alfvén. L’eficiència de l’absorció ressonant és independent
del grau d’ionització del plasma i és consistent amb els valors observacionals de τD/P . Els efectes
tèrmics, aix́ı com la difusió magnètica, són irrellevants per a l’esmortëıment de les oscil·lacions
transversals. Pel que fa a les oscil·lacions longitudinals, és a dir, els modes lents MHD, les pèrdues
per radiació del plasma de la protuberància i les col·lisions entre els ions i els neutres són els
processos que proporcionen els menors temps d’esmortëıment. El seu efecte combinat provoca
un esmortëıment eficient dels modes lents en fibres de filament, amb valors de τD/P compatibles
amb els que s’observen. Finalment, les ones d’Alfvén també s’investiguen i obtenim que estan
esmortëıdes per les col·lisions entre els ions i els neutres. No obstant això, l’esmortëıment de
les ones d’Alfvén no és molt eficient perquè els temps d’esmortëıment teòrics són entre un i dos
ordres de magnitud més grans que els periodes corresponents. Totes aquestes conclusions són
vàlides tant per oscil·lacions de fibres individuals com col·lectives.

Les nostres conclusions contribueixen a entendre el problema de l’esmortëıment de les oscil-
lacions de protuberàncies, ja que identificam alguns candidats que podrien ser responsables de
l’esmortëıment. Els nostres resultats permeten que els segents estudis d’ones MHD en protu-
beràncies puguin menysprear alguns mecanismes irrellevants. Per altra banda, aquells efectes
importants aqúı senyalats s’haurien d’investigar amb més detall, i models d’estructures fines de
protuberància més complicats s’haurien de considerar en el futur proper.
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1
Introduction

1.1 General aspects about the Sun

The Sun is the closest star to Earth and the main body of the Solar System, ac-
counting for about 99.8% of its mass. The Sun is a common main sequence star of
spectral class G2, which implies a surface temperature of approximately 5,500 K. There
are more than 100 million G2 class stars in our galaxy, so the Sun is not peculiar from
the astronomical point of view. However, the Sun is essential for us since its energy
supports almost all life on Earth and drives the Earth’s climate and weather. Some
physical parameters of the Sun are given in Table 1.1.

Parameter Value
Radius (R�) 6.96× 108 m
Mass (M�) 1.99× 1030 kg
Average density 1.408 kg m−3

Surface gravity 273.95 m s−2

Luminosity (L�) 3.827× 1026 W
Equatorial rotation period 25.38 days
Mean distance from Earth (1 AU) 1.496× 1011 m

Table 1.1: Some values of the Sun’s physical parameters.

The Sun is a near-perfect sphere roughly composed of 74% hydrogen, 25% helium,
and trace quantities of other elements. Due to the high temperatures, the Sun’s material
is in plasma state. In addition, the plasma is in hydrostatic balance since gas pressure
is balanced by the gravity force. The Sun’s energy is generated by nuclear fusion of
hydrogen nuclei into helium. Nuclear fusion reactions only take place at the Sun’s
deepest part, the core, which extends from the center to about 0.2 R� (1 R� = 1 solar
radius). The core has a density of up to 1.5 × 105 kg m−3 and a temperature close
to 15 × 106 K. The energy generated at the Sun’s core during one second is enough to
meet human needs for 50,000 years. This intense heat is transfered from the core to
the Sun’s surface through two layers. The first layer, from 0.2 R� to 0.7 R�, is called
the radiation zone since thermal radiation is the mechanism responsible for the heat
transfer in this layer. Photons are emitted, absorbed, and reemited continuously by
protons and helium nuclei until they reach the boundary with the upper layer. In this
layer, energy makes its way very slowly since photons take 106 years for the journey.
The next layer, the convection zone, extends from 0.7 R� to the surface. Here, the
material is not dense or hot enough to transfer the heat energy via radiation. Moreover,
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CHAPTER 1. INTRODUCTION

Figure 1.1: The solar photosphere. On the left: an image of the complete solar disc
(Credits: NASA/ESA/SOHO). On the right: a closer image of a sunspot group, where
granulation is also visible (Credits: Royal Swedish Academy of Sciences).

the temperature gradient is too large for the material to remain in static equilibrium.
As a result, thermal convection becomes the dominant energy transfer mechanism. By
means of convective motions, large hot plasma volumes rise and carry heat toward the
Sun’s surface. Eventually, these plasma volumes cool down by releasing some heat before
falling and begining the process again.

The visible surface of the Sun, the photosphere, is often considered as the first layer of
the solar atmosphere (see left-hand image in Fig. 1.1). The photosphere is an extremely
thin layer of about 550 km thick and with a temperature of 5,500 K, below which the
Sun becomes opaque to visible light. The bulk of the emitted solar radiation comes
from this thin layer. In high resolution images, the photosphere appears covered with
irregularly shaped granules which are in continual motion. These granules are actually
the tops of the convective cells that are overshooting the upper convection zone. Besides
granulation, one can find some dark features known as sunspots (see right-hand image in
Fig. 1.1), which have a temperature of about 4,000 K, being cooler than the rest of the
photosphere. Sunspots are magnetic phenomena caused by the emergence of magnetic
flux from the solar interior. At the center of a sunspot, the magnetic field strength can
be larger than 1,000 G.

Above the photosphere lies a temperature minimum region with a temperature of
about 4,000 K, followed by the less dense and more transparent chromosphere about
2,000 km thick, in which the temperature increases gradually with altitude, ranging up to
around 10,000 K near the top of the chromosphere. Then, above the chromosphere there
is the chromosphere-corona transition region (CCTR) in which the temperature rises
rapidly, by means of a still unknown mechanism, from around 10,000 K to temperatures
closer to 106 K. There, the external atmospheric layer, i.e., the corona, begins (see
Fig. 1.2).

14



1.2. THE SOLAR CORONA

Figure 1.2: Temperature and mass density in the solar atmosphere as function to the
distance above the top of the convection zone given by the VALC model of Vernazza et
al. (1981).

1.2 The solar corona

The dazzling light of the photosphere prevents the much less bright solar corona
from being normally seen in white light. Only at the times of an eclipse, or by means of
a coronagraph, it is possible to see the corona with the naked eye (see left-hand image in
Fig. 1.3). By a brief observation during an eclipse, one can see that the corona appears
highly structured. In the quiet inner corona, the average electron density is about
1014 m−3, but this is enhanced by factors of 5 to 20 in many of the visible structures
during eclipses. The density rapidly falls off with distance from the solar surface, being
less than 1010 m−3 at 10 R�.

With the help of spectroscopy, spectral lines corresponding to highly ionized iron (Fe
XIV) and other highly ionized nuclei have been observed in the coronal spectrum, which
indicates a plasma temperature in excess of 106 K. Parts of the corona can even reach
107 K. Hence, the coronal plasma is almost fully ionized. Due to its high temperature,
the corona emits in abundance in the ultraviolet and extreme-ultraviolet (EUV) parts
of the spectrum (see right-hand image in Fig. 1.3). In these wavelengths, a new corona
appears, full of features and details. The fact that the corona is much hotter than the
photosphere leads to the so-called coronal heating problem, as the mechanism responsible
for the coronal heating remains unknown. Although some processes related to wave
heating and/or magnetic reconnection are candidates, the discovery of the actual heating
mechanism is one of the challenges of solar physics nowadays.

The coronal magnetic field is responsible for all the coronal behavior, structure, and
dynamics, caused by the interaction between the magnetic field and the plasma. The
bright zones observed in EUV images are called active regions. There, the magnetic
field strength reaches values of more than 100 G, and correspond to the parts of the
corona above the photospheric sunspots. The magnetic field causes a rich collection of
phenomena inside and near active regions, like, e.g., coronal loops, flares, or coronal
mass ejections. It is beyond the purpose of this work to perform a complete description
of all these phenomena, but we refer the reader to Aschwanden (2004) for a detailed
explanation.
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Figure 1.3: The solar corona. On the left: an image in white light during a solar eclipse.
The upper part of the chromosphere and some prominences are also visible in red color
(Credits: Luc Viatour). On the right: an image in EUV (171 Å) from the SOHO
spacecraft, where active regions can be distinguished as bright zones.

1.3 Prominences and filaments

Prominences and filaments are large-scale coronal magnetic structures which are
the subject of the present investigation. In this Section, we give a brief introduction
to prominences and their properties. Recent reviews by Patsourakos & Vial (2002),
Labrosse et al. (2010), and Mackay et al. (2010) provide a more detailed information
about the physics of solar prominences. Although prominences are located in the corona,
they possess temperatures a hundred times lower and densities a hundred or a thousand
times larger than typical coronal values. The fact that their physical conditions are akin
to those in the chromosphere suggests one possible scenario for prominence formation,
in which prominences are made of chromospheric material which has been lifted up
into the corona. Although the processes that lead to prominence formation are still
under investigation, another proposed scenario to explain how prominences acquire their
mass is condensation and cooling of plasma from the surrounding corona. In eclipse or
coronagraph pictures, prominences appear as bright (in emission) structures at the limb,
but in Hα-images of the disc they show up as dark (in absorption) ribbons, which are
called filaments (see images in Figs. 1.4 and 1.5). One must bear in mind that both
structures, prominences and filaments, are the same phenomenon observed from two
different points of view, the two names remaining because of historical reasons. In this
work, we indistinctly use both names to refer to such magnetic structures.

Some basic questions about the nature of prominences are still unsolved, e.g., how
is the denser prominence material supported against gravity in the much less dense
corona, and how is the cooler prominence plasma thermally isolated from the much
hotter external medium. There is no doubt that the magnetic field is responsible for
keeping up the prominence plasma and maintaining it thermally shielded, but the precise
structure and orientation of the magnetic field lines, especially in the surrounding corona,
is still enigmatic and not well-known.

A prominence forms over time-scales of about a day. The so-called quiescent promi-
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Figure 1.4: On the left: a classic Hα (6563 Å, T ∼ 10,000 K) image of a prominence
at the solar limb from the Big Bear Observatory (1970). On the right: an image in
EUV (304 Å, T ∼ 60,000 – 80,000 K) from the SOHO spacecraft, where an erupting
prominence is compared to the size of Earth.

Figure 1.5: Top figures: two high-resolution Hα images of quiescent solar filaments in
which the fine-structure is clearly seen. The top left- and right-hand side images are
adapted from Lin et al. (2003) and Lin et al. (2007), respectively, and were both taken by
the Swedish Solar Telescope on La Palma. Bottom figure: the whole body of a filament
in Hα from the Dutch Open Telescope (2004).
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Parameter Value
Density 2× 10−12 – 5× 10−10 kg m−3

Temperature 5,000 – 15,000 K
Gas pressure 0.003 – 0.038 Pa
Magnetic field strength 4− 20 G
Prominence Length 60,000 – 600,000 km
Prominence Height 10,000 – 100,000 km
Prominence Width 4,000 – 30,000 km
Fine Structure Length 3,000 – 15,000 km
Fine Structure Width 100 – 500 km

Table 1.2: Typical physical parameters of solar quiescent prominences and their fine
structures. Adapted from Patsourakos & Vial (2002), Aschwanden (2004), and Lin
(2004).

nences may persist in the corona for several months, whereas active prominences (i.e.,
those located in active regions) have life-times of only minutes or hours. At the end
of their life, some prominences may suffer an instability with a subsequent eruption.
Such eruptions are sometimes accompanied by a flare or coronal mass ejection. Due
to their longer life-time, quiescent prominences have been more studied than the active
ones. As the rest of the solar atmosphere, prominences are roughly composed by 90%
hydrogen and 10% helium. The prominence plasma is only partially ionized for typical
filament temperatures. The hydrogen ionization degree could probably vary in differ-
ent filaments or even in different regions within the same filament (Patsourakos & Vial
2002). Regarding helium, recent studies by Gouttebroze & Labrosse (2009) indicate
that for central prominence temperatures, the ratio of the number densities of He II to
He I is around 10%, whereas the presence of He III is negligible. Typical parameters of
quiescent prominence plasmas are shown in Table 1.2.

1.3.1 The prominence fine structure

The fine structure of solar prominences and filaments is clearly seen in high-resolution
observations (see Fig. 1.5). These fine structures, usually called threads or fibrils, appear
as a myriad of long (5′′ − 20′′) and thin (0′′.2 − 0′′.6) dark ribbons in Hα images of
filaments on the solar disk (e.g., Lin 2004; Lin et al. 2005, 2007, 2008, 2009), as well as
in observations of prominences in the solar limb from the Solar Optical Telescope (SOT)
aboard the Hinode satellite (e.g., Okamoto et al. 2007; Berger et al. 2008; Chae et al.
2008; Ning et al. 2009a; Schmieder et al. 2010). Although a mean value of 20 degrees
has been reported, statistical studies show that the orientation of threads with respect
to the filament long axis can significantly vary within the same filament (Lin 2004).
Vertical threads are more commonly seen in quiescent prominences (e.g., Berger et al.
2008; Chae et al. 2008) whereas horizontal threads are usually observed in active region
prominences (e.g., Okamoto et al. 2007). However, Schmieder et al. (2010) pointed
out that vertical threads might actually be a pile up of horizontal threads which seem
vertical structures when projected in the plane of the sky. Since threads are observed
in both the spines and barbs of filaments and prominences, it is believed that they are
the prominence basic sub-structures.
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Figure 1.6: On the left: an Hα image of a region of the solar disc where a filament is
seen. On the right: a photospheric magnetogram of the same region, in which white
and black colors represent opposite magnetic polarities. One can see that the filament
is located between two regions of opposite polarity.

Figure 1.7: A cartoon representation of a prominence composed by several partially
filled magnetic flux tubes. The dense part of the flux tubes would correspond to the
observed threads in the Hα images. From Joarder et al. (1997).

From the theoretical point of view, filament threads have been modeled as magnetic
flux tubes anchored in the solar photosphere (e.g., Ballester & Priest 1989; Rempel et al.
1999), which are piled up to form the prominence body. In this interpretation, only part
of the flux tubes would be filled with the cool (∼ 104 K) filament material, which would
correspond to the observed threads. This is conceptually in agreement with prominence
models similar to the Kippenhahn & Schlüter (1957) configuration, or its generalization
by, e.g., Poland & Anzer (1971) or Hood & Anzer (1990), where the prominence material
is trapped in dips near the apex of a magnetic arcade connecting two photospheric
regions of opposite magnetic polarity (see Fig. 1.6). A schematic representation of a
prominence formed by several fine structures is displayed in Figure 1.7. It has also
been suggested from differential emission measure studies that each thread might be
surrounded by its own prominence-corona transition region (PCTR) where the plasma
physical properties would abruptly vary from filament to coronal conditions (Cirigliano
et al. 2004). Alternatively, all threads might be embedded in a common and extensive
medium with PCTR properties.

Mass flows along threads have been frequently reported (e.g., Zirker et al. 1994,
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1998; Lin et al. 2003, 2005; Chae et al. 2008; Schmieder et al. 2010), with typical flow
velocities of less than 30 km s−1 in quiescent prominences, although larger values have
been detected in active region prominences (Okamoto et al. 2007). Therefore, some of
the observed flow velocities may reach or be larger than the local sound speed of the
prominence plasma. Regarding the presence of flows, a phenomenon which deserves
special attention is the existence of the so-called counter-streaming flows, i.e., opposite
flows within adjacent threads (see Zirker et al. 1998; Lin et al. 2003, for details).

1.4 Prominence oscillations: Observational evidence

The observational evidence of oscillations in prominences goes back to more than 40
years ago (Ramsey & Smith 1966). According to the amplitude of motions, prominence
oscillations are usually classified in large- and small-amplitude oscillations.

1.4.1 Large-amplitude oscillations

They were the first type of oscillations observed in prominences. Since we do not
study large-amplitude oscillations in the present work, their features are briefly com-
mented here. The amplitude of these oscillations is of the order of 20 km s−1 or higher.
They arise when a disturbance, e.g., a Moreton wave (Moreton 1960), impacts on a
prominence side and shakes its whole body. As a consequence of this large-scale per-
turbation, the whole prominence vibrates during several periods until the oscillation is
damped. Such phenomenon is also called winking filament, a term that comes from
the optical effect caused by the oscillations on Hα images. During the oscillations, the
filament becomes visible in Hα when it is at rest, but when its line-of-sight velocity is
sufficiently large, the emission from the material falls outside the bandpass of the filter
and the filament becomes invisible in Hα. Hence, the prominence alternatively shows up
in and disappears from the images, causing a flickering effect. Recently, Tripathi et al.
(2009) have reviewed both observational aspects and modeling efforts of large-amplitude
prominence oscillations.

1.4.2 Small-amplitude oscillations

They were first detected in quiescent solar prominences 40 years ago (Harvey 1969).
Their amplitude typically goes from less than 0.1 km s−1 to 2–3 km s−1. The analysis
of time series of line width, line intensity, and Doppler velocity reveals the local nature
of the oscillations. They have been historically classified, according to their periods, in
short- (P < 10 min), intermediate- (10 min < P < 40 min) and long-period oscillations
(P > 40 min), although very short-periods of less than 1 min (e.g., Balthasar et al.
1993) and extreme ultra-long-periods of more than 8 hours (e.g., Foullon et al. 2004)
have been reported. Nevertheless, the value of the period seems not to be related
with the nature or the source of the trigger and is probably linked to the prominence
eigenmode that is excited. Although most of the observations only reported periods,
there are also a few determinations of the wavelength, λ, and phase speed, vph, of
standing oscillations and propagating waves in prominences. For example, Molowny-
Horas et al. (1997) reported maximum values of such quantities (λ ≤ 20,000 km and
vph ≤ 44 km s−1) in a polar crown prominence, whereas Terradas et al. (2002) detected
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two propagating waves in the same prominence with λ ≈ 67,500 km, vph ≈ 15 km s−1

and λ ≈ 50,000 km, vph ≈ 12 km s−1, respectively. Moreover, Terradas et al. (2002)
also found a standing wave with λ ≈ 44,000 km and vph ≈ 12 km s−1 (see Fig. 1.8).
The reader is referred to some recent reviews for a comprehensive information about
the observational background of small-amplitude prominence oscillations (e.g., Oliver &
Ballester 2002; Wiehr 2004; Engvold 2008).

Fine structure oscillations

Individual oscillations of prominence and filament fine structures have been fre-
quently reported since telescopes with a high time and spatial resolution became avail-
able. Early works by Yi et al. (1991) and Yi & Engvold (1991), with a relatively low
spatial resolution (∼ 1′′), detected oscillatory variations in Doppler signals and He I line
intensity from threads in quiescent filaments. Later, Hα and Doppler observations with
a much better spatial resolution (∼ 0.′′2) found evidence of oscillations and propagating
waves along quiescent filament threads (Lin 2004; Lin et al. 2007, 2009), while observa-
tions from the Hinode spacecraft showed transverse oscillations of thread-like structures
in both active region (Okamoto et al. 2007) and quiescent (Ning et al. 2009a; Schmieder
et al. 2010) prominences. Common features of these observations are that the reported
periods are usually in a narrow range between 2 and 10 minutes, and that the velocity
amplitudes are smaller than ∼ 3 km s−1. Therefore, the properties of thread oscilla-
tions are consistent with those of short-period oscillations reported with lower spatial
resolutions, while intermediate- and long-period oscillations might be related to global
oscillations of the whole prominence body. On the other hand, Yi et al. (1991), Lin et
al. (2007), and Schmieder et al. (2010) suggested the presence of groups of neighboring
threads that moved in phase, which may be a signature of collective interactions and
oscillations. The large number of observations of oscillations and propagating waves
in filament threads suggests that these phenomena are very frequent and ubiquitous in
prominences. Since waves and mass flows have been simultaneously observed, it is likely
that the presence of flows affects wave propagation in filament threads.

Damping of the oscillations

Another interesting characteristic of small-amplitude prominence oscillations is that
they seem to be damped after a few periods. This behavior was previously suggested
by some observations (e.g., Landman et al. 1977; Tsubaki & Takeuchi 1986), but it
was first extensively investigated by Molowny-Horas et al. (1999) and Terradas et al.
(2002). These authors studied two-dimensional Doppler time-series from a quiescent
prominence and found that oscillations detected in large areas of the prominence were
typically damped after 2–3 periods (see left-hand side panel of Fig. 1.9), meaning that
the oscillations were strongly attenuated. Similar results were obtained in a more re-
cent work by Mashnich et al. (2009). Although the spatial resolution of the works by
Molowny-Horas et al. (1999) and Terradas et al. (2002) was not enough to distinguish
individual threads, one could assume that, as for large-scale oscillations, the individual
and/or collective thread motions are also damped in time. This statement was recently
confirmed by some high-resolution observations, which were able to resolve damped fine
structure oscillations. For example, a damping pattern is seen in several high-resolution
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Figure 1.8: Two-dimensional Doppler velocity field at three different times in a quiescent
solar prominence. The alternation of white (positive) and black (negative) velocities
inside the black rectangle is a clear manifestation of an oscillatory phenomenon. The
grey line represents the edge of the prominence body. From Terradas et al. (2002).
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Figure 1.9: On the left: contour plot of the damping time, τD, obtained by Terradas et
al. (2002) after fitting a sinusoidal function multiplied by a factor exp(−t/τD) to their
Doppler series. The damping times correspond to a few oscillatory periods. The arrows
represent the wavevector and the continuous black line is the prominence edge. On the
right: several Doppler velocity signals from different positions in an oscillating filament
thread. The amplitude falls to the noise level after 3 periods, approximately. From Lin
(2004).

Doppler time-series from individual filament threads by Lin (2004), see right-hand side
panel of Fig. 1.9, as well as in the Hinode/SOT observations by Ning et al. (2009a), who
reported a maximum number of 8 periods before the oscillations completely disappeared.
It is expected that future observations will report more useful information concerning
this damping phenomenon.

1.5 Prominence oscillations: Theoretical modeling

Here, we briefly discuss those works that have broached the theoretical investigation
of prominence oscillations. As mentioned before, we restrict ourselves to studies concern-
ing small-amplitude oscillations. From the theoretical point of view, small-amplitude
prominence oscillations have been interpreted in the context of the magnetohydrody-
namic (MHD) theory, more precisely, in terms of linear MHD waves. One can distin-
guish between works that considered models representing the whole prominence body,
and so they studied global oscillations, to those investigations that focused on fine
structure oscillations. While the former usually considered slab models, the latter typi-
cally adopted cylindrical configurations as a more realistic representation of prominence
threads. Again, recent reviews on these issues are also available (e.g., Ballester 2006;
Banerjee et al. 2007; Oliver 2009; Arregui & Ballester 2010)

1.5.1 Global oscillations

The whole prominence is modeled as a plasma slab of finite width. The slab can
be isolated or, on the contrary, embedded into a hotter environment representing the
solar corona. Some works have investigated the ideal, adiabatic, slow and fast MHD
eigenmodes in slab-like configurations with a specific orientation of the magnetic field
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(parallel, transverse, or skewed) with respect to the slab axis. Examples of such stud-
ies are Joarder & Roberts (1992a,b, 1993b), in which the effect of gravity is neglected
and so straight magnetic field lines are considered. On the other hand, Oliver et al.
(1992, 1993) took gravity into account and assumed curved field lines based on the Kip-
penhahn & Schlüter (1957) model modified to include the surrounding coronal plasma
(Poland & Anzer 1971), whereas Joarder & Roberts (1993a) performed a similar study
by considering the Menzel (1951) model. Despite this difference in the modeling, the
studies by Joarder & Roberts (1992a,b, 1993a,b) and Oliver et al. (1992, 1993) agree in
establishing a distinction between different normal modes depending on the dominant
medium supporting the oscillation. Hence, internal modes are essentially supported
by the prominence slab whereas external modes arise from the presence of the corona.
In addition, hybrid (or string) modes appear due to the combined effect of both me-
dia. Hybrid and internal modes are reasonable candidates to explain the oscillations
observed in large areas of a prominence (e.g., Pouget et al. 2006). In the context of this
interpretation, slow and fast modes would be related to long- and intermediate-period
oscillations, respectively.

It is worth mentioning that a few works, as Oliver & Ballester (1995, 1996) for the
transverse magnetic field case, and Soler et al. (2007a) for the longitudinal magnetic field
case, also considered the presence of a prominence-corona transition region (PCTR).
While the oscillatory modes of the transverse case are similar to those without PCTR, a
new class of modes, labeled as PCTR slow modes by Soler et al. (2007a), appear in the
longitudinal case. These PCTR slow modes have been suggested by Foullon et al. (2009)
as responsible for the very long-period oscillatory motions detected in a prominence with
the SOHO/EIT instrument.

1.5.2 Fine-structure oscillations

A number of theoretical works have also attempted to explain the observed individ-
ual fine structure oscillations in terms of linear MHD waves supported by the thread
body. First, investigations focused on the study of transverse oscillations supported
by individual threads, taking into account the inhomogeneity of the plasma in the lon-
gitudinal direction (based on the model by Ballester & Priest 1989). To do so, the
β = 0 approximation and Cartesian geometry were adopted for simplicity. Joarder et
al. (1997) and Dı́az et al. (2001) considered a longitudinally inhomogeneous Cartesian
thread surrounded by the coronal medium. These authors found that only the low-
frequency oscillatory modes are confined within the dense, central region of the thread,
and that perturbations can achieve large amplitudes in the corona at long distances from
the thread. Later, Dı́az et al. (2003) assumed the same geometry, but took longitudi-
nal propagation into account, and obtained a better confinement for the perturbations.
Considering the more realistic and representative cylindrical geometry, Dı́az et al. (2002)
found that a longitudinally inhomogeneous cylindrical thread supports an even smaller
number of trapped oscillations and that perturbations are much more efficiently con-
fined within the cylinder in comparison with the Cartesian case. Later on, Dymova &
Ruderman (2005) studied the same cylindrical configuration but assuming the thin tube
approximation. Both Dı́az et al. (2002) and Dymova & Ruderman (2005) concluded
that the so-called kink MHD mode (see, e.g., Edwin & Roberts 1983; Goossens et al.
2009) is the best candidate to explain the observed transverse, non-axisymmetric thread
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oscillations, and is also consistent with the reported short periods when realistic physical
conditions of prominences are considered in the model1.

An example of this interpretation in terms of kink modes is the work by Terradas
et al. (2008), who performed the first application of the coronal seismology technique
to prominence oscillations. Terradas et al. (2008) made use of the model by Dymova &
Ruderman (2005) and the observations by Okamoto et al. (2007) to obtain lower limits
of the prominence Alfvén speed. An interpretation of the observations by Okamoto et al.
(2007) in terms of kink modes was also suggested by Erdélyi & Fedun (2007). Similarly,
Lin et al. (2009) interpreted their observations of swaying threads in Hα sequences as
propagating kink waves and gave an estimation of the Alfvén speed2.

Subsequently, the attention of authors turned to the study of collective oscillations
of groups of threads. Cartesian geometry and the β = 0 approximation were adopted
again for simplicity. Hence, Dı́az et al. (2005) investigated the collective fast modes of
systems of non-identical threads and found that the only non-leaky mode corresponds
to that in which all threads oscillate in spatial phase. Later, Dı́az & Roberts (2006)
considered the limit of a periodic array of threads and obtained a similar conclusion.
Therefore, these results seem to indicate that neighboring threads within the prominence
should oscillate coherently, even if they have different physical properties. However, we
have to point out that the Cartesian geometry provides quite an unrealistic confinement
of perturbations, and so systems of more realistic cylindrical threads might not show
such a clear collective behavior. This statement was confirmed by Luna et al. (2009),
who made use of the T -matrix theory of scattering to study the collective oscillations of
arbitrary systems of non-identical cylinders. Although Luna et al. (2009) applied their
method to coronal loops, most of their results are also applicable to prominence threads.
Luna et al. (2009) concluded that, contrary to the Cartesian case of Dı́az et al. (2005),
the collective behavior of the oscillations diminishes when cylinders with non-identical
densities are considered, the oscillatory modes behaving in practice like individual modes
of the cylinders if mildly different densities within the cylinders are assumed3.

1.5.3 Damping of the oscillations

Turning to the damping of oscillations, its theoretical investigation has been under-
taken by a number of recent papers. Several non-ideal damping mechanisms have been
proposed to explain the observed attenuation (e.g., Ballai 2003). In order to under-
stand better these non-ideal effect and assess their efficiency as damping mechanisms,
the complexity of the models has been improved step by step from very simple con-
figurations, e.g., homogeneous media, to more realistic models representing prominence
fine structures. Review papers focusing on the damping phenomenon are, e.g., Oliver
(2009), Mackay et al. (2010), and Arregui & Ballester (2010).

1Chapter 3 contains a comprehensive study of the kink mode and other MHD modes supported by
a magnetic flux tube.

2More extensive details regarding the work by Lin et al. (2009) are given in Section 3.4.
3Chapter 8 contains an application of the technique developed by Luna et al. (2009) to the context

of thread oscillations.
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Homogeneous medium

By removing the ideal assumption and including dissipative terms in the basic MHD
equations, several works studied the attenuation of propagating waves in a homogeneous
and unbounded medium with prominence conditions. Following a treatment similar to
than of Porter et al. (1994), the time and spatial damping by non-adiabatic effects (opti-
cally thin radiation losses, thermal conduction, and plasma heating) in a static medium
was investigated by Carbonell et al. (2004, 2006), while the effect of a background mass
flow was subsequently analyzed by Carbonell et al. (2009). The common conclusion
of these investigations is that only slow and thermal waves are efficiently damped by
non-adiabatic effects, radiative losses being the dominant mechanism, while fast waves
are very slightly damped and Alfvén waves are completely unaffected.

On the other hand, the influence of partial ionization on the time damping of MHD
waves has been also investigated in an unbounded medium. Forteza et al. (2007) followed
the treatment by Braginskii (1965) and derived the full set of MHD equations along with
the dispersion relation of linear waves in a partially ionized, single-fluid plasma (see also
Pinto et al. 2008). The presence of electrons, protons, and neutral hydrogen atoms was
taken into account, whereas helium and other species were not considered. In subsequent
works, they extended their previous analysis by considering radiative losses and thermal
conduction by electrons and neutrals (Forteza et al. 2008), and by studying the spatial
damping in an equilibrium with mass flow (Carbonell et al. 2010). Their main results
with respect to the fully ionized case were, first of all, that ion-neutral collisions (by
means of the so-called Cowling’s diffusion) can damp both Alfvén and fast waves but
non-adiabatic effects remain only important for the damping of slow and thermal waves,
and second, that there exist critical values of the wavenumber which constrain the wave
behavior, since propagation for larger wavenumbers is forbidden. Later on, the effect of
the presence of neutral and singly ionized helium on the time damping was assessed by
Soler et al. (2010a), who found that due to the small abundance of helium in prominences
(∼ 10%), these species can be safely neglected.

Slab models

The efficiency of several mechanisms for the damping of prominence slab eigenmodes
has also been studied. Regarding works that neglected the presence of the coronal
medium, Terradas et al. (2001) studied the attenuation of oscillations by radiative losses
based on the Newtonian law of cooling with a constant relaxation time in both the
Kippenhahn & Schlüter (1957) and Menzel (1951) prominence models, whereas Terradas
et al. (2005) performed a more complete treatment of non-adiabatic effects by assuming
optically thin radiation, heating, and thermal conduction in a homogeneous slab model.
The main conclusion of these studies is similar to that of studies in homogeneous media,
i.e., that only slow waves are efficiently attenuated by thermal effects, radiation being
the dominant damping mechanism in the range of typically observed wavelengths in
prominences (from 5×103 km to 105 km according to Oliver & Ballester 2002), but fast
waves remain practically undamped.

Later on, Soler et al. (2007b) and Soler et al. (2009a) considered a prominence slab
embedded in the solar corona, with the magnetic field parallel and perpendicular to
the slab axis, respectively, and performed a treatment of the non-adiabatic effects as in
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Figure 1.10: On the left: model of a prominence slab with a longitudinal magnetic
field considered by Soler et al. (2007b). On the right: the equivalent model but with a
transverse magnetic field adopted by Soler et al. (2009a).

Terradas et al. (2005). Schematic representations of the models considered by Soler et
al. (2007b, 2009a) are displayed in Figure 1.10. Regarding the parallel magnetic field
case, Soler et al. (2007b) obtained that the presence of the coronal medium can reduce
the damping time of fast modes due to the influence of coronal thermal conduction,
although this effect is not enough to obtain fast mode damping times compatible with
those observed. In the perpendicular case, Soler et al. (2009a) showed that fast modes
may be thermally unstable for some values of the wavelength due to the heat transfer
from the corona to the prominence slab along magnetic field lines.

It is also worth mentioning the works by Schutgens (1997a,b) and Schutgens &
Tóth (1999). These works do not specifically use slab models, but it seems appropriate
to include them here because they are concerned with global prominence oscillations.
Schutgens (1997a,b) modeled a filament as an infinitely thin line current surrounded by
a magnetic arcade and suspended above a perfectly conducting plane representing the
solar photosphere (Kuperus & Raadu 1974). They found a quite efficient attenuation of
the oscillations supported by the configuration, with damping times corresponding to a
few oscillatory periods. Schutgens (1997a,b) claimed that the damping is caused by time
delays in the communication of disturbances between the filament and the photosphere,
although an alternative interpretation in terms of wave leakage was suggested by Oliver
(2009). Finally, Schutgens & Tóth (1999) performed an investigation similar to than
of Schutgens (1997a,b) but considered a current-carrying filament of finite width and
used the isothermal MHD equations. Schutgens & Tóth (1999) also obtained an efficient
damping of the oscillations and interpreted their results in terms of emission of waves
(leakage) by the filament. Although the works by Schutgens (1997a,b) and Schutgens &
Tóth (1999) are relevant because they are the only investigations to date that include
the effect of the photospheric surface current and a complex magnetic structure, one
must be aware of the quite strong simplifications of their models.

Cylindrical models

The next obvious step is to extend these previous investigations by considering cylin-
drical models, thus the damping of fine structure oscillations can be studied. Arregui et
al. (2008) considered a transverse inhomogeneous transitional layer between a cylindrical
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filament thread and the corona, and investigated the kink mode damping by resonant
absorption in the Alfvén continuum. They obtained a damping time of approximately 3
periods for typical wavelengths of prominence oscillations and a typical density contrast
between the filament and the coronal plasma, meaning that resonant absorption is a
good candidate to be the damping mechanism of transverse thread oscillations. Sub-
sequently, other mechanisms have been studied in a number of papers included in the
present thesis, so we do not give here more details but refer the reader to the following
Chapters of the Thesis.

In Chapter 4, which is based on Soler et al. (2008), we investigate the effect of non-
adiabatic mechanisms and mass flows on the damping of oscillations in homogeneous
filament threads. Next, the wave propagation and damping in a partially ionized thread
is studied in Chapter 5, which contains results from Soler et al. (2009d). Later on, the
investigation on the damping by resonant absorption in a transverse inhomogeneous fila-
ment thread performed by Arregui et al. (2008) is extended by considering also resonant
absorption in the slow continuum (Soler et al. 2009c), and the joint effect of resonant
absorption and partial ionization (Soler et al. 2009e), both works included in Chapter 6.
Subsequently, Chapter 7 extends the results of Chapter 6 by taking into account the lon-
gitudinal inhomogeneity of the plasma in the fine structure (Soler et al. 2010b). Finally,
in Chapters 8 and 9 we investigate the damping of collective oscillations of cylindrical
threads by non-adiabatic effects (Soler et al. 2009b) and resonant absorption (Soler et
al. 2010c).
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2
Magnetohydrodynamic Theory

2.1 Plasma definition and collective behavior

Plasma is often called the fourth state of matter. Some estimates suggest that up
to 99% of matter in the entire visible universe is plasma. According to Chen (1984),
a plasma is a quasi-neutral gas of charged particles and neutral particles which exhibits
collective behaviour. Since a plasma is macroscopically quasi-neutral, the basic difference
with a fully neutral gas (when no magnetic fields are present) is the long-range, collective
interaction that a plasma presents. In solar physics, it is assumed that the coronal
medium is in plasma state. This is also commonly assumed for the prominence material.
Hence, to test this assertion one must prove that both media at least are ionised and show
collective behavior. The first condition can be easily verified through Saha’s Equation,
which gives the ratio of the number density of ions, ni, to neutrals, nn, at a temperature
T , assuming optically thin hydrogen lines,

ni

nn
=
(

2πmekB

h2

)3/2 T 3/2

ne
exp

(
− Ui

kBT

)
,

�� ��2.1

where ne is the number density of electrons, kB = 1.38× 10−23 m2 kg s−2 K−1 is Boltz-
mann’s constant, me = 9.1×10−31 kg is the electron mas, h = 6.63×10−34 m2 kg s−1 is
Planck’s constant, and Ui is the ionization energy (Ui = 13.6 eV for hydrogen). Equa-
tion (2.1) gives ni/nn ≈ 2.4 × 108 for coronal conditions, and ni/nn ≈ 4.7 × 102 for
prominence parameters. Thus, the condition of partial ionization is well-satisfied in
both media.

On the other hand, the following conditions should be satisfied for a collective plasma
behavior:

1. The long-range Coulomb interaction between charged particles should dominate
over the short-range binary collisions with neutrals. Considering τ0 as the typical
time-scale for collective motions and τn as the mean time between collisions of
charged particles with neutrals, this condition reduces to

τ0 � τn.
�� ��2.2

The time-scale τ0 can be related to the frequency of the global oscillatory motions
of the plasma, ν, as τ0 ∼ ν−1. On the other hand, a simplified expression for τn can
be obtained as the ratio of the mean free path of particles, λmfp = (nnσ)−1, where σ
is the collisions cross-section, to the thermal speed, vth ≈ (kBT/mp)

1/2 ≈ 100T 1/2,
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wheremp is the proton mass. Hence, assuming σ ≈ 10−19 m2 for neutral hydrogen-
proton collisions (Goedbloed & Poedts 2004), one has

τn ≈
1017

nn

√
T
.

�� ��2.3

Considering that for a typical coronal plasma nn ∼ 4× 10−7 m−3, Equation (2.3)
gives τn ≈ 2 × 1020 s. So, one has that for a coronal plasma ν � 5 × 10−21 Hz,
meaning that Equation (2.2) is not a “hard” restriction on the time-scales for
plasma behavior in the solar corona. On the other hand, we need the value of
the neutral number density in prominence conditions to give an estimation of τn.
We must note here that nn is not well-known for prominence plasmas. Although
some authors have provided different estimations for nn, the estimated values differ
by several orders of magnitude (Patsourakos & Vial 2002; Labrosse et al. 2010),
and a reliable estimation of nn is needed in order to compute the value of τn
for prominence conditions. Nevertheless, τn must definitely be several orders of
magnitude smaller in prominences than in the corona. Thus, the condition given
by Equation (2.2) is more restrictive in the case of prominences, meaning that
that ion-neutral collisions could have a relevant role in the behavior of prominence
plasmas.

2. There should be frequent enough collisions between electrons and ions to establish
fluid behavior. The mean time between electron-ion collisions, τe, can be estimated
from the mean frequency of electron-ion collisions, νei, as τe ∼ ν−1

ei . Expressions for
νei are provided by, e.g., De Pontieu et al. (2001) and Goossens (2003). Therefore,
τe can be written as

τe ≈
12π3/2ε2m

1/2
e√

2e4ni lnΛ
(kBT )3/2 ,

�� ��2.4

where e = 1.6 × 10−19 C is the electron charge, ε is the electric permittivity
(ε = 8.854 × 10−12 F m−1 in vacuum), and lnΛ the Coulomb logarithm, whose
value is generally between 5 and 20 and has a weak dependence on temperature
and density (Priest 1982). According to Equation (2.4), the numerical value of
τe in coronal conditions is τe ≈ 1.5 × 10−1 s, while for a prominence plasma
τe ≈ 2 × 10−6 s. Taking into account this restriction along with that for ion-
neutral collisions (Eq. [2.3]), we see that the typical time-scale for collective plasma
interactions, τ0, should satisfy τe � τ0 � τn. Such a condition is easily fulfilled in
both coronal and prominence media.

3. The length-scale of plasma dynamics should be much larger than the minimum size
over which the condition of quasi-neutrality is satisfied. Thermal fluctuations can
produce local charge imbalances and create huge electric fields. These electric fields
cause the acceleration of particles, and the charge imbalance is neutralized almost
instantaneously. These charge imbalances can occur when the thermal energy of
particles, kBT , is comparable with their electrostatic energy, eφ. Defining the
Debye length, λD, as the typical size of the region where the condition kBT ≈ eφ
is fulfilled, then the length-scales of plasma dynamics should be much larger than
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the Debye length. The Debye length can be estimated through Poisson’s law as

d2φ

dx2
=

1
ε
ene,

φ

λ2
D

∼ ene

ε
, eφ ∼

e2neλ
2
D

ε
,

�� ��2.5

where φ is the electrostatic potential. By imposing kBT ≈ eφ, one obtains

λD ≈
√
ε0kBT

e2ne
.

�� ��2.6

For coronal conditions λD ≈ 7 cm, while for prominence conditions λD ≈ 0.006 cm.
Both values are much smaller than typical coronal and prominence spatial scales
(see Table 1.2).

4. For statistical considerations, the number of particles ND inside a Debye sphere,
i.e., a sphere of radius λD, should be big enough. This means ND � 1. The
expression for ND is

ND =
4
3
πλ3

Dne ≈ 1.4× 106

√
T 3

ne
,

�� ��2.7

which for coronal conditions gives ND ≈ 1.4× 109, and for prominence conditions
ND ≈ 104. Again, the statistical condition is easily satisfied in both media.

One must bear in mind that coronal and prominence plasmas are permeated by
magnetic fields. Hence, in addition to the microscopic or small-scale conditions involv-
ing thermodynamic quantities, more global and macroscopic conditions involving the
magnetic field should be considered and incorporated to the plasma description. These
additional conditions are listed below.

1. The macroscopic time-scale of the plasma processes should be much larger than the
inverse of the cyclotron frequency of electrons and ions, namely Ω−1

e,i , where sub-
scripts e and i stand for electrons and ions, respectively. According to Goedbloed
& Poedts (2004), Ω−1

e,i is related to the magnetic field strength B as

Ω−1
e,i =

me,i

eB
.

�� ��2.8

Assuming B = 10 G as a typical magnetic field strength in quiescent prominences
and the corona, Equation (2.8) gives Ω−1

e ≈ 5.7× 10−9 s for electrons and Ω−1
i ≈

10−5 s for ions. We see that ions provide with the most limiting condition due to
their greater mass, although the above restriction is well-satisfied in prominence
and coronal plasmas.

2. The macroscopic length-scale of plasma processes should be much larger than the
cyclotron radii, re,i, of electrons and ions. Again, following Goedbloed & Poedts
(2004), this quantity is inversely proportional to the magnetic field strength,

re,i =
me,i v⊥ e,i

eB
,

�� ��2.9

where v⊥ e,i is the perpendicular particle velocity to the magnetic field. Considering
for simplicity v⊥ e,i ≈ vth e,i ≈ (kBT/me,i)

1/2 and B = 10 G, one can obtain
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re ≈ 0.02 m for electrons and ri ≈ 1 m for ions under coronal conditions, and
re ≈ 0.002 m, ri ≈ 0.09 m in a prominence medium. As before, ions provide with
the most limiting condition but the estimated value of ri is much smaller than the
typical size of prominences and coronal magnetic structures.

We have proved that all these microscopic and macroscopic restrictions are well-
satisfied under coronal and prominence conditions. Therefore, one can safely assume
that both media are in plasma state. Now, in order to describe prominence and coronal
phenomena, we need a physical theory which tells us how a magnetized plasma behaves.
The bases of such theory are presented next.

2.2 Magnetohydrodynamic equations

2.2.1 Assumptions of the magnetohydrodynamic approximation

The most extended physical theory that describes the macroscopic behavior of a
medium in a plasma state and in the presence of a magnetic field is known as magneto-
hydrodynamics (MHD). In the literature, the main equations of this theory are usually
introduced from two different points of view. The first one starts from Boltzmann’s
kinetic theory and combines it with Maxwell’s equations of electromagnetism in order
to obtain the basic MHD equations through several approximations and assumptions.
This derivation, which requires a long mathematical handling, can be followed in, e.g.,
Goossens (2003). On the other hand, the second method considers from the beginning
the well-known fundamental equations of fluid dynamics together with Maxwell’s equa-
tions, on the basis that a plasma is assumed a fluid made of charged and neutral particles,
and permeated by electric and magnetic fields. The second approach is mathematically
simpler and shorter, and one can find it in, e.g., Priest (1982).

In this work we choose an intermediate way. We derive the basic MHD equations
starting from the fundamental equations of fluid dynamics and electromagnetism as in
Priest (1982), but incorporate the general description of Braginskii (1965) for a partially
ionized plasma composed by different species. When the equations of particular species
are combined to obtain the single-fluid equations, our analysis follows closely that of
Goossens (2003). Next, we briefly summarize the fundamental assumptions which lead
us from the general equations to the final MHD expressions:

1. The plasma is treated as a continuum. As mentioned in Section 2.1, this assump-
tion is valid when the length-scale of plasma processes is much larger than the
species cyclotron radius.

2. The plasma is assumed to be in thermodynamic equilibrium. This means that the
typical time-scales and length-scales are much larger than the collision time and
the mean free path of particles, respectively.

3. Due to the presence of magnetic fields, some of the plasma properties are highly
anisotropic. For example, the coefficient of thermal conductivity takes values
across and along the direction of the magnetic field which differ by several orders
of magnitude (see Sec. 2.2.4).
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4. The plasma is treated as a single fluid. Global plasma magnitudes are consid-
ered, which are computed as the sum of the magnitudes of each species (i.e., ions,
electrons, and neutrals). In the derivation of global plasma magnitudes, all re-
maining terms related with a single species are neglected based on several physical
arguments.

5. The equations are written in an inertial frame and relativistic effects are neglected
because typical plasma velocities in the solar corona are much smaller than the
speed of light.

6. A single-fluid Ohm’s Law is adopted rather than the general multifluid version.
This Ohm’s Law, however, can be generalized to contain diffusion terms represent-
ing collisions between different species when the plasma is partially ionized (see
details in Sec. 2.2.3).

Finally, note that all the following expressions are written in MKS units.

2.2.2 Fluid equations

In the single-fluid approach (see, e.g., Braginskii 1965) and assuming a hydrogen
plasma composed by ions (protons), electrons, and neutrals, we define the total plasma
velocity, ~v, as

~v = ξe~ve + ξi~vi + ξn~vn,
�� ��2.10

with ξβ the relative density of species β, and ~vβ the corresponding species velocity,
where subscripts e, i, and n explicitly denote electron, ion, and neutral species, respec-
tively. Due to the small electron mass, the electron contribution can be neglected from
Equation (2.10), so

~v ≈ ξi~vi + ξn~vn.
�� ��2.11

Equivalently, the fluid total density, ρ, and gas pressure, p, are

ρ = ρe + ρi + ρn ≈ ρi + ρn,
�� ��2.12

p = pe + pi + pn,
�� ��2.13

where ρβ = nβmβ and pβ = nβkBTβ, with nβ, mβ, and Tβ the number density, mass
particle, and temperature of species β, respectively. Since ρβ = ξβρ, we get the relation
ξi + ξn ≈ 1. In addition, the macroscopic neutrality of the plasma imposes ne = ni.

Equation of state

We assume a strong thermal coupling between species, so it is possible to define
a single temperature, T , representing the whole fluid. Then, the total density, gas
pressure, and temperature are related as

p = ρR
T

µ̃
,

�� ��2.14

where R = 8.3 × 103 m2 s−2 K−1 is the ideal gas constant and µ̃ is the mean atomic
weight, i.e., the average mass per particle in units of the proton mass, defined as

µ̃ =
1

1 + ξi
.

�� ��2.15

33



CHAPTER 2. MAGNETOHYDRODYNAMIC THEORY

For fully ionized plasmas ξi = 1 and µ̃ = 0.5, whereas for a neutral gas ξi = 0 and µ̃ = 1.
Therefore, the quantity µ̃ can be used to indicate the plasma ionization degree. In some
cases, an effective temperature enclosing the contribution of both the temperature and
the mean atomic weight, namely T̃ , is defined as

T̃ =
T

µ̃
.

�� ��2.16

Mass conservation

A plasma, as a continuous medium, must satisfy the equation of mass conservation.
This equation can be easily obtained by adding the mass conservation equations of each
species, resulting in

Dρ
Dt

+ ρ∇ · ~v = 0,
�� ��2.17

where D
Dt ≡

∂
∂t + ~v · ∇ is the material (or total) derivative for time variations following

the plasma motion.

Momentum equation

The momentum equation (or equation of motion) establishes the force balance to
which a unit volume of plasma is submitted. As for the mass conservation equation, a
simple way to obtain it is to add the momentum equations of each particular species.
Since this procedure is not so obvious as for the mass conservation equation, we give
more details next.

In an inertial frame, the momentum equation of species β takes the following form
(Braginskii 1965),

mβnβ
D~vβ

Dt
= −∇pβ + Zβnβe

(
~E + ~vβ × ~B

)
+mβnβ~g −∇ ·Πβ −

∑
β′ 6=β

~Rββ′ .
�� ��2.18

The terms on the right-hand side of Equation (2.18) correspond to, from left to right, the
gas pressure gradient force, the Lorentz force, the gravity force, the viscous force, and
a term that accounts for the transfer of momentum due to collisions between different
species. In Equation (2.18), ~E and ~B are the electric and magnetic fields, respectively,
~g is the acceleration of gravity, Π is the viscosity tensor, and ~Rββ′ is the collision term
between species β and β′, namely

~Rββ′ = αββ′
(
~vβ − ~vβ′

)
,

�� ��2.19

with αββ′ the friction coefficient of species β and β′ (see details in Sec. 2.2.3). The factor
Zβ in Equation (2.18) is Zi = 1, Ze = −1, and Zn = 0 for ions, electrons, and neutrals,
respectively. Next, we simply add the corresponding equations of ions, electrons, and
neutrals, and see that the collisional terms cancel each other because we assume elastic
collisions. In addition, we define the density current, ~, in terms of the difference of
electron and ion velocities as

~ = e (ni~vi − ne~ve) = ene (~vi − ~ve) .
�� ��2.20
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Hence, the total momentum equation is

ρ
D~v
Dt

= −∇p+ ~× ~B + ~Fg + ~Fν ,
�� ��2.21

where ~Fg and ~Fν are the total gravity and viscous forces, respectively. The Lorentz force
is usually rewritten by using the non-relativistic version of Ampere’s Law, namely

~ =
1
µ
∇× ~B,

�� ��2.22

giving the following more common expression for the magnetic force,

~× ~B =
1
µ

(
∇× ~B

)
× ~B,

�� ��2.23

where µ is the magnetic permeability (µ = 4π×10−7 N A−2 in vacuum). Furthermore, by
means of the vector identity

(
∇× ~B

)
× ~B =

(
~B · ∇

)
~B− 1

2∇
(
~B · ~B

)
, Equation (2.23)

reduces to

~× ~B =
1
µ

[(
~B · ∇

)
~B − 1

2
∇
(
~B · ~B

)]
.

�� ��2.24

The first term on the right-hand side of Equation (2.24) represents the magnetic tension,
that appears when magnetic field lines are curved. The second term is the gradient of
an scalar quantity called the magnetic pressure force, namely

− 1
2µ
∇
(
~B · ~B

)
= −∇

(
B2

2µ

)
≡ −∇pm.

�� ��2.25

Due to the presence of the magnetic field, an element of plasma is affected by two kinds
of pressure: the gas pressure, p, and the magnetic pressure, pm. The sum of both
quantities gives us the total pressure, pT, namely

pT = p+ pm = p+
B2

2µ
.

�� ��2.26

The ratio of the gas pressure to the magnetic pressure is the plasma β parameter,

β =
p

pm
,

�� ��2.27

which quantifies the importance of the former with respect to the latter. For some
coronal applications, such as waves in coronal loops, the β = 0 approximation (by which
gas pressure is neglected) is assumed.

On the other hand, a simplified expression for the viscous force in the case of weak
magnetic field is

~Fν = −∇ ·Π ≈ ρν

[
∇2~v +

1
3
∇ (∇ · ~v)

]
,

�� ��2.28

where ν is the coefficient of kinematic viscosity (see Braginskii 1965, for the general
expression of the viscous force). In the incompressible case, i.e.,∇·~v = 0, Equation (2.28)
simplifies to

~Fν ≈ ρν∇2~v.
�� ��2.29
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The Reynolds number, Re, is a dimensionless quantity that gives the importance of the
viscous force with respect to the inertial term in the equation of motion, and is defined
as

Re =
|ρ~v · ∇~v|
|ρν∇2~v|

∼ λ0v0
ν

,
�� ��2.30

with λ0 and v0 typical length- and velocity-scales. For coronal and prominence param-
eters, Re � 1 and therefore the viscous force is usually neglected.

Finally, the total gravity force, ~Fg, is

~Fg = −ρgû,
�� ��2.31

where û is the unitary vector in the vertical direction, and g is the local gravitational
acceleration. The effect of the gravity force is often neglected in comparison with the
Lorentz and pressure forces. If both gravity and viscous forces are neglected, the ideal
version of the momentum equation is

ρ
D~v
Dt

= −∇p+
1
µ

(
∇× ~B

)
× ~B.

�� ��2.32

2.2.3 Generalized induction equation for a partially ionized plasma

The induction equation is a relation that tells us how magnetic fields are created
and destroyed. To deduce it, we must combine Maxwell’s equations with an appropriate
expression of Ohm’s Law for a partially ionized plasma. Maxwell’s equations are

∇× ~B = µ~+
1
c2
∂ ~E

∂t
,

�� ��2.33

∇ · ~B = 0,
�� ��2.34

∇× ~E = −∂
~B

∂t
,

�� ��2.35

∇ · ~E =
ρ∗

ε
,

�� ��2.36

where ρ∗ is the density charge and c is the speed of light (c = 2.998 × 108 m s−1 in
vacuum). The second term on the right-hand side of Equation (2.33) is neglected in
non-relativistic MHD, which is justified by comparing the size of this term with the size
of the left-hand side term. From Equation (2.35),

E0

λ0
∼ B0

τ0
,

�� ��2.37

where λ0 and τ0 are typical length- and time-scales. Thus, the size of the second term
on the right-hand side of Equation (2.33) is

E0

c2τ0
∼ B0λ0

c2τ2
0

∼ v2
0

c2
B0

λ0
∼ v2

0

c2
|∇ × ~B| � |∇ × ~B|,

�� ��2.38

since v2
0/c

2 � 1, v0 being a typical plasma velocity.
The process that leads us to obtain a valid Ohm’s Law for a partially ionized plasma

is long and arduous. For this reason, we refer the reader to Forteza et al. (2007) and
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Pinto et al. (2008) for extensive details, while we give here a summary of the method.
First, we define ~w ≡ ~vi − ~vn, and combine the momentum equations of electron, ions,
and neutrals (Eq. [2.18]) to obtain the following expression after neglecting the electron
inertia,

~w ≈ 1
αn

(
ξn~× ~B +

αen

ene
~− ~G

)
,

�� ��2.39

where αn = αen + αin is the neutral friction coefficient, with αen and αin the particular
electron-neutral and ion-neutral friction coefficients, respectively, and ~G is the pressure
function defined as

~G = ξn∇ (pe + pi)− ξi∇pn = 2ξn∇pi − ξi∇pn.
�� ��2.40

Next, we express the electron velocity as

~ve = ~v − 1
ene

~+ ξn ~w,
�� ��2.41

and use Equations (2.20) and (2.39) to finally obtain the expression of the effective
electric field, ~E∗, from the electron momentum equation, namely

~E∗ = ~E + ~v × ~B =
1

e2n2
e

(
αe −

α2
en

αn

)
~+

1
ene

(
1− 2ξn

αen

αn

)
~× ~B

− ξ2n
αn

(
~× ~B

)
× ~B +

ξn
αn

~G× ~B +
1
ene

(
αen

αn

~G−∇pe

)
,

�� ��2.42

with αe = αei + αen the total electron friction coefficient. Equation (2.42) provides us
with the relation between ~E, ~, and ~B that we are looking for, i.e., the generalized Ohm’s
Law. The last step is to use Equations (2.22) and (2.35) to eliminate ~E and ~ in favor
of ~B, so the general form of the induction equation for a partially ionized plasma is

∂ ~B

∂t
= ∇×

(
~v × ~B

)
−∇×

[
1

µe2n2
e

(
αe −

α2
en

αn

)
∇× ~B

]
− ∇×

{
1

µene

[
1− 2ξn

αen

αn

](
∇× ~B

)
× ~B

}
+ ∇×

{
ξ2n
µαn

[(
∇× ~B

)
× ~B

]
× ~B

}
− ∇×

[
ξn
αn

~G× ~B

]
−∇×

[
1
ene

(
αen

αn

~G−∇pe

)]
.

�� ��2.43

Equation (2.43) together with the condition upon the divergence of ~B given by Equa-
tion (2.34), govern the magnetic field evolution. The terms on the right-hand side of
Equation (2.43) usually receive the following names in the literature: the convective
term, Ohm’s diffusion, Hall’s diffusion, the ambipolar diffusion, the diamagnetic current
term, and Biermann’s battery, respectively. Among these terms, Biermann’s battery is
the less important in solar atmospheric plasmas, since it is only relevant when large pres-
sure gradients are present, a situation more representative of stellar interiors, whereas
Biermann’s battery term is identically zero in a homogeneous plasma. For these reasons,
we hereafter neglect this term. The other non-ideal terms appear due to different effects.
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For example, Ohm’s diffusion is mainly governed by electron-ion collisions and ambipo-
lar diffusion is mostly caused by ion-neutral collisions. On the other hand, Hall’s effect
is also present in the fully ionized case, but this mechanism is enhanced by ion-neutral
collisions since they tend to decouple ions from the magnetic field while electrons remain
able to drift with the magnetic field (Pandey & Wardle 2008). On the contrary, the dia-
magnetic current term couples the magnetic field evolution with pressure gradients, and
since ~G vanishes in both the fully ionized and fully neutrals limits (see Eq. [2.40]), the
effect of the diamagnetic term is larger for intermediate values of the ionization fraction.

Equation (2.43) can be written in a more compact form by defining Ohm’s, η, Hall’s,
ηH, and ambipolar, ηA, magnetic diffusivities, along with the diamagnetic current coef-
ficient, Ξ̃. Thus,

∂ ~B

∂t
= ∇×

(
~v × ~B

)
−∇×

(
η∇× ~B

)
−∇×

[
ηH

(
∇× ~B

)
× ~B

]
+ ∇×

{
ηA

[(
∇× ~B

)
× ~B

]
× ~B

}
−∇×

[
Ξ̃~G× ~B

]
,

�� ��2.44

with

η =
1

µe2n2
e

(
αe −

α2
en

αn

)
,

�� ��2.45

ηH =
1

µene

(
1− 2ξn

αen

αn

)
,

�� ��2.46

ηA =
ξ2n
µαn

,
�� ��2.47

Ξ̃ =
ξn
αn
.

�� ��2.48

The ambipolar diffusivity, ηA, is commonly expressed in terms of the Cowling’s coeffi-
cient, ηC, as

ηA =
ηC − η
| ~B|2

.
�� ��2.49

It is also appropriate to define Ohm’s, σ, and Cowling’s, σC, conductivities, namely

σ =
1
µη
, σC =

1
µηC

.
�� ��2.50

With the help of these last definitions, we can express the sum of the corresponding
Ohm’s and ambipolar terms in Equation (2.42) as

µη~− µηA

(
~× ~B

)
× ~B =

1
σ
~‖ +

1
σC
~⊥,

�� ��2.51

where ~‖ and ~⊥ are the components of the density current parallel and perpendicular
to the background magnetic field, respectively, whose expressions given by Arber et al.
(2007) are

~‖ =

(
~ · ~B

)
~B

| ~B|2
, ~⊥ =

~B ×
(
~× ~B

)
| ~B|2

.
�� ��2.52
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Hence, we see that the parameters η and ηC correspond to the coefficients of magnetic
diffusion parallel and perpendicular to magnetic field lines, respectively. Due to the
presence of neutrals ηC � η, meaning that perpendicular magnetic diffusion is much
more efficient than longitudinal magnetic diffusion in a partially ionized plasma. In a
fully ionized plasma ηC = η, so magnetic diffusion is then isotropic. As an example,
the ratio ηC/η in the solar chromosphere can be computed with the physical parameters
provided by the VALC model (Vernazza et al. 1981). According to the VALC model (see
Fig. 2.1), the ratio ηC/η is maximum at 2000 km above the photosphere, approximately,
and tends to ηC/η ≈ 1 in both the almost neutral photosphere and the fully ionized
corona. Since the temperature and density of prominence material are similar to those in
the chromosphere, it is expected that the ratio ηC/η has also a large value in prominence
plasmas.

Figure 2.1: Ratio ηC/η in the solar chromosphere according to the VALC model by
Vernazza et al. (1981) for different values of the magnetic field strength. The abrupt
decrease around 2100 km above the photosphere, approximately, is present because the
plasma becomes fully ionized when transition region temperatures are reached.

Expressions for the friction coefficients

We give here expressions for the friction coefficients between species. These expres-
sions are needed to compute Equations (2.45)–(2.48). Each particular friction coefficient,
αββ′ , is computed as

αββ′ = nβmββ′νββ′ ,
�� ��2.53

with νββ′ the collisional frequency between species β and β′, and

mββ′ =
mβmβ′

mβ +mβ′
.

�� ��2.54

From Equation (2.53), we see that αββ′ = αβ′β. As given by De Pontieu et al. (2001),
see also Equation (2.4), the collisional frequency between electrons and ions is

νei = 3.7× 10−6ni lnΛ
T 3/2

.
�� ��2.55
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The collisional frequencies between electrons or ions and neutral species are

νen = nn

√
8kBT

πmen
Σen, νin = nn

√
8kBT

πmin
Σin,

�� ��2.56

where Σen = 10−19 m2 and Σin = 5× 10−19 m2 are the electron-neutral and ion-neutral
collisional cross-sections, respectively. For a hydrogen plasma, mi ≈ mn, so a simplified
expression for the neutral friction coefficient, αn, can be provided by neglecting the
contribution of electron-neutral collisions. Thus,

αn ≈
1
2
ξn (1− ξn)

ρ2

mn

√
16kBT

πmi
Σin.

�� ��2.57

Fully ionized case

Let us consider the fully ionized case. In such a situation, ξn = 0 and therefore
ηA = Ξ̃ = 0, η = αei/µe

2n2
e , and ηH = 1/µene. Equation (2.44) becomes

∂ ~B

∂t
= ∇×

(
~v × ~B

)
−∇×

(
η∇× ~B

)
−∇×

[
ηH

(
∇× ~B

)
× ~B

]
.

�� ��2.58

The importance of Ohm’s diffusion can be estimated though the dimensionless parameter
Rm, known as the magnetic Reynolds number, which is defined as the ratio of the
magnitudes of the convective to Ohm’s terms, namely

Rm =
|∇ ×

(
~v × ~B

)
|

|∇ ×
(
η∇× ~B

)
|
∼ λ0v0

η
,

with λ0 and v0 typical length- and velocity-scales. For solar coronal conditions, one has
Rm ∼ 1012, while for prominence conditions Rm ∼ 107, meaning that Ohm’s diffusion
can be neglected for many applications unless very small length-scales are involved.
Similarly, one can define the dimensionless parameter RH, accounting for importance of
Hall’s diffusion term with respect to the convective term, as

RH =
|∇ ×

(
~v × ~B

)
|

|∇ ×
[
ηH

(
∇× ~B

)
× ~B

]
|
∼ λ0v0
ηHB0

∼ η

ηHB0
Rm ∼

νei

Ωe
Rm,

�� ��2.59

where B0 is a typical value of the magnetic field strength and Ωe is the electron cyclotron
frequency (Eq. [2.8]). Since RH is proportional to Rm, the only possibility for Hall’s term
to become relevant is that νei/Ωe � 1. Such a situation occurs for extremely rare and
hot plasmas, meaning that Hall’s effect can be of relevance in solar wind conditions (e.g.,
Zhelyazkov et al. 1996; Miteva et al. 2003) but plays a minor role in the solar corona
and prominences. In a partially ionized plasma, the relative importance of Hall’s effect
grows with the density of neutrals, but in coronal/prominence conditions it can be still
safely neglected (Pandey & Wardle 2008; Krishan & Varghese 2008).

Finally, by neglecting both Ohm’s and Hall’s terms, we arrive at the induction
equation for an ideal plasma, namely

∂ ~B

∂t
= ∇×

(
~v × ~B

)
.

�� ��2.60
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2.2.4 Non-adiabatic energy equation

The energy equation governs the variation of the plasma entropy per unit mass, S,
as

ρT
DS
Dt

= −L,
�� ��2.61

where L represents the net effect of all the sources and sinks of energy. In the adiabatic
case, in which the plasma is thermally isolated, i.e., there is no exchange of heat, L = 0
and so the entropy is conserved.

Equation (2.61) is often written in terms of the thermodynamic variables pressure p
and density ρ. In order to obtain this alternative expression, we use the internal energy,
e, instead of the entropy, so

ρ
De
Dt

− p

ρ

Dρ
Dt

= −L.
�� ��2.62

Now, considering that for an ideal polytropic gas

e =
1

γ − 1
p

ρ
,

�� ��2.63

where γ is the adiabatic index, we obtain

ργ

γ − 1
D
Dt

(
p

ργ

)
= −L,

�� ��2.64

or, in a more common form,

Dp
Dt

− γp

ρ

Dρ
Dt

+ (γ − 1)L = 0.
�� ��2.65

From Equation. (2.64) we see that pρ−γ remains constant in the adiabatic case (L = 0).
In such a situation, Equation (2.65) becomes

Dp
Dt

− γp

ρ

Dρ
Dt

= 0,
�� ��2.66

which is the energy equation adopted in ideal MHD.
In this study we go a step forward from the ideal, adiabatic MHD and consider a more

complete energy equation which includes several non-adiabatic mechanisms enclosed in
the term L of Equation (2.65). The general from of the energy loss function L can be
written as

L = ∇ · ~q + ρL− ~ · ~E∗ −Qν ,
�� ��2.67

where ~q is the heat flux due to particle thermal conduction, L is the heat-loss function
which balances radiative losses with an arbitrary external heating input, ~ · ~E∗ is the
generalized Joule heating, and Qν is the viscous heating.

Thermal conduction

The conductive heat vector is expressed as

~q = −κ∇T,
�� ��2.68
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where κ is the thermal conductivity tensor. For convenience, we split the divergence of
the heat flux into the components parallel (∇‖) and perpendicular (∇⊥) to the magnetic
field lines as

−∇ · ~q = ∇‖ ·
(
κ‖∇‖T

)
+∇⊥ · (κ⊥∇⊥T ) ,

where κ‖ and κ⊥ are the scalar components of the thermal conductivity tensor parallel
and perpendicular to the magnetic field, respectively. In a fully ionized medium, κ‖ is
governed by electrons, whereas κ⊥ is caused mainly by the ions. In the partially ionized
case, one has to add the contribution of neutrals, κn, to both scalar conductivities, since
the thermal conduction by neutrals is isotropic. Thus,

κ‖ = κ‖e + κn,
�� ��2.69

κ⊥ = κ⊥i + κn.
�� ��2.70

In terms of the plasma parameters (e.g., Spitzer 1962; Braginskii 1965), the expression
for the parallel conductivity of electrons is

κ‖e = 1.8× 10−10 ξiT
5/2

ln Λ
W m−1 K−1.

�� ��2.71

For applications in the solar atmosphere, κ‖e ≈ 10−11T 5/2 W m−1 K−1. On the other
hand, the perpendicular conductivity due to ions is

κ⊥i = 8.2× 10−33 (ln Λ)2 n2
i

| ~B|2T 3
κ‖e = 1.48× 10−42 ln Λ ξ3i ρ

2

m2
i | ~B|2T 1/2

W m−1 K−1.
�� ��2.72

Finally, Parker (1953) provides with an expression for the conductivity of neutrals,
namely

κn = 2.44× 10−2ξnT
1/2 W m−1 K−1.

�� ��2.73

In the fully ionized case, i.e., κn = 0, the perpendicular conductivity can be neglected
for prominence and coronal applications since κ⊥/κ‖ ≈ 10−13, so only the parallel
component is usually considered. In such a case, the heat flux is approximated by
its parallel component to the magnetic field and can be written in the following form

−∇ · ~q ≈ ∇‖ ·
(
κ‖∇‖T

)
=
(
~B · ∇

)[ κ‖

| ~B|2
(
~B · ∇T

)]
.

�� ��2.74

Radiation losses and external heating

The difference between the heat input, H(T, ρ), and radiative losses, C(T, ρ), is often
evaluated through the heat-loss function as

L(T, ρ) = C(T, ρ)−H(T, ρ),
�� ��2.75

which depends on the local plasma parameters. The determination of an analytical
function of the temperature and density that describes the radiative losses of the atmo-
spheric solar plasma is a very difficult work that has been broached by several authors,
whose calculations show significant discrepancies. Rosner et al. (1978) pointed out that
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the differences arise from three basic concerns: the nature of the atomic processes in-
volved in radiative emission, the accuracy of the atomic physical parameters considered
in the calculations, and the values of the relative elemental abundances.

One reasonable semi-empirical approximation to an expression for the radiative loss
function is to consider a fit which lies within the estimated error bounds of the best
detailed calculations. This approach was taken into account by Hildner (1974), assuming
an optically thin plasma (e.g., Cox & Tucker 1969), who performed a piecewise fit for the
radiative losses as a function of temperature (see Fig. 2.2). The functional expression
for the fit by Hildner (1974) is

C(T, ρ) = ξiρχ
∗Tα,

�� ��2.76

where χ∗ and α are piecewise functions depending on the temperature. The assumption
of an optically thin plasma seems a reasonable approach for coronal conditions, whereas
prominence plasmas may be considered optically thick. Some authors (e.g., Rosner et al.
1978; Milne et al. 1979) have proposed corrections to the values of χ∗ and α in the range
of typical prominence temperatures in order to represent radiation losses in optically
thick plasmas. The values of the parameters χ∗ and α for various temperature ranges
are given in Table 2.1.

On the other hand, the processes involved in the solar atmospheric heating are still
not well-known and, nowadays, it is one of the most important unsolved problems of
solar physics. Several possible heating mechanisms or scenarios have been proposed
as, e.g., wave heating or nanoflare heating. In some works (e.g., Rosner et al. 1978;
Dahlburg & Mariska 1988), the heating function is written in the following form

H(T, ρ) = hρa∗T b∗ ,
�� ��2.77

where the exponents a∗ and b∗ can be chosen to assume different heating scenarios, and
h is a constant parameter whose value is chosen to satisfy the energy balance condition.
Some parametrizations found in the literature are:

• constant heating per unit volume (a∗ = b∗ = 0),

• constant heating per unit mass (a∗ = 1, b∗ = 0),

• heating by coronal current dissipation (a∗ = b∗ = 1),

• heating by Alfvén mode/mode conversion (a∗ = b∗ = 7/6),

• heating by Alfvén mode/anomalous conduction damping (a∗ = 1/2, b∗ = −1/2).

Hence, the general expression for the heat-loss function in terms of the plasma conditions
is

L(T, ρ) = ξiρχ
∗Tα − hρa∗T b∗ .

�� ��2.78

Joule heating

The expression of the generalized Joule heating in a partially ionized plasma is easily
obtained by combining Equations (2.42) and (2.51), so

~ · ~E∗ ≈ 1
σ
|~‖|2 +

1
σC
|~⊥|2,

�� ��2.79

43



CHAPTER 2. MAGNETOHYDRODYNAMIC THEORY

Figure 2.2: Radiative energy loss from an optically thin solar atmospheric plasma as
a function of the temperature. The solid line represents the piecewise fit by Hildner
(1974) and the symbols correspond to previous calculations made by several authors.
From Hildner (1974).

Regime Temperature range χ∗ α

Prominence (1) T < 15×103 K 1.76× 10−13 7.4
Prominence (2) T < 15×103 K 1.76× 10−53 17.4
Prominence (3) T < 15×103 K 7.01× 10−104 30
PCTR (1) 15×103 K < T < 80×103 K 4.29× 1010 1.8
PCTR (2) 80×103 K < T < 300×103 K 2.86× 1019 0.0
PCTR (3) 300×103 K < T < 800×103 K 1.41× 1033 −2.5
Corona T > 800×103 K 1.97× 1024 −1.0

Table 2.1: Values in MKS units of the parameters in the radiative loss function
(Eq. [2.76]) corresponding to several temperature regimes. The three prominence
regimes represent different plasma optical thicknesses, Prominence (1) corresponding
to optically thin plasma, while Prominence (2) and (3) are for optically thick and very
thick plasmas, respectively. Optically thin plasma is assumed for the other regimes.
Prominence (2) and (3) regimes are parametrizations from Milne et al. (1979) and Ros-
ner et al. (1978), respectively, while the rest of regimes are given by Hildner (1974).
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where we have dropped both Biermann’s battery and diamagnetic current terms because
their contribution is negligible in comparison to Ohm’s and Cowling’s heating, whereas
Hall’s term does not contribute at all since

(
~× ~B

)
is perpendicular to ~.

Viscous heating

The general expression for the viscous heating in terms of the complete viscosity
tensor is (Braginskii 1965)

Qν =
∑
m,n

Πmn
∂vm

∂xn
,

�� ��2.80

where vm is the m-th component of the velocity vector, and xn is the n-th coordinate.
Priest (1982) provides a simpler expression in the case of weak magnetic fields, namely

Qν ≈ ρν

(
1
2

∑
m,n

emnemn −
2
3

(∇ · ~v)2
)
,

�� ��2.81

where emn = ∂vm
∂xn

+ ∂vn
∂xm

is the rate of strain tensor.

2.2.5 Summary of the basic equations

We summarize here the basic MHD equations derived in the last Sections, namely

Dρ
Dt

= −ρ∇ · ~v,
�� ��2.82

ρ
D~v
Dt

= −∇p+
1
µ

(
∇× ~B

)
× ~B − ρ~g −∇ ·Π,

�� ��2.83

∂ ~B

∂t
= ∇×

(
~v × ~B

)
−∇×

(
η∇× ~B

)
−∇×

[
ηH

(
∇× ~B

)
× ~B

]
+∇×

{
ηC − η
| ~B|2

[(
∇× ~B

)
× ~B

]
× ~B

}
−∇×

[
Ξ̃~G× ~B

]
,

�� ��2.84

Dp
Dt

− γp

ρ

Dρ
Dt

= (γ − 1) [∇ · (κ∇T )− ρL(T, ρ)]

+ (γ − 1)

[
1
σ
|~‖|2 +

1
σC
|~⊥|2 +

∑
m,n

Πmn
∂vm

∂xn

]
,

�� ��2.85

p = ρR
T

µ̃
,

�� ��2.86

along with the condition ∇ · ~B = 0.

2.3 Linear ideal magnetohydrodynamic waves

2.3.1 Linearized ideal magnetohydrodynamic equations

One of the typical applications of the MHD theory is the study of MHD waves in
a magnetized plasma (Alfvén 1942). However, since Equations (2.82)–(2.86) form a
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collection of coupled non-linear differential equations, their solution, even numerically,
is extremely complicated. The first approximation one can perform is to consider the
ideal case, i.e., to neglect all dissipative effects. Thus, Equations (2.82)–(2.86) become

Dρ
Dt

= −ρ∇ · ~v,
�� ��2.87

ρ
D~v
Dt

= −∇p+
1
µ

(
∇× ~B

)
× ~B,

�� ��2.88

∂ ~B

∂t
= ∇×

(
~v × ~B

)
,

�� ��2.89

Dp
Dt

− γp

ρ

Dρ
Dt

= 0,
�� ��2.90

p = ρR
T

µ̃
,

�� ��2.91

where the gravity force has also been dropped from the momentum equation. We can
go even further by restricting ourselves to waves with a small velocity amplitude in
comparison to the sound and Alfvén speeds. In such a case, it is enough to consider the
linear regime. After linearization, Equations (2.87)–(2.91) reduce to a more simplified
form, and it is possible to obtain analytical solutions in some simple situations.

We assume that each physical quantity, f , can be written as the sum of an equilibrium
value, f0, and a perturbation, f1. Thus, ~B(t, ~r) = ~B0 + ~B1(t, ~r), p(t, ~r) = p0 + p1(t, ~r),
ρ(t, ~r) = ρ0+ρ1(t, ~r), T (t, ~r) = T0+T1(t, ~r), and ~v(t, ~r) = ~v1(t, ~r), where subscripts 0 and
1 denote equilibrium and perturbed quantities, respectively, and ~r is the position vector.
Hereafter, the equilibrium values are taken homogeneous and constant in time. Next, we
replace these expressions into Equations (2.87)–(2.91) and assume small perturbations,
so we neglect all non-linear terms in the perturbed quantities. The resultant linear
equations are

∂ρ1

∂t
= −ρ0∇ · ~v1,

�� ��2.92

ρ0
∂~v1
∂t

= −∇p1 +
1
µ

(
∇× ~B1

)
× ~B0,

�� ��2.93

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
,

�� ��2.94

∂p1

∂t
− c2s

∂ρ1

∂t
= 0,

�� ��2.95

p1

p0
=
ρ1

ρ0
+
T1

T0
,

�� ��2.96

along with ∇ · ~B1 = 0, where c2s = γp0

ρ0
is the adiabatic sound speed squared.

2.3.2 Dispersion relation of magnetohydrodynamic waves in uniform
medium with straight magnetic field

It is well-known that perturbations from the equilibrium state in a gas propagate at
the sound speed of the medium, cs, as variations in pressure and the other thermody-
namic quantities. On the other hand, due to the presence of a magnetic field, waves in
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a plasma are also driven by the Lorentz force besides the pressure force. In the absence
of gravity, two kinds of waves can occur in a magnetized, ideal plasma: Alfvén waves
and magnetoacoustic (or magnetosonic) waves. Linear Alfvén waves are driven exclu-
sively by the magnetic tension and propagate non-dispersively along the field lines at
a fixed velocity, i.e., the Alfvén speed vA (defined below). However, magnetoacoustic
waves arise from the combined effect of the pressure gradient and the Lorentz force.
Two types of magnetoacoustic waves are possible, called slow and fast magnetoacoustic
waves.

We assume a uniform and unbounded medium with density ρ0, pressure p0, and
temperature T0, permeated by a homogeneous magnetic field, ~B0. The propagation of
small perturbations from the equilibrium state is governed by Equations (2.92)–(2.96),
which, following Lighthill (1960), can be combined to arrive at the next expressions

∂2

∂t2

[
∂2

∂t2
−
(
c2s + v2

A

)
∇2

]
∆ +

c2sv
2
A

| ~B0|2
(
~B0 · ∇

)2
∇2∆ = 0,

�� ��2.97[
∂2

∂t2
−

v2
A

| ~B0|2
(
~B0 · ∇

)2
]

Ψ = 0,
�� ��2.98

where v2
A = | ~B0|2

µρ0
is the Alfvén speed squared, and ∆ and Ψ are the divergence and

the component of the rotational of the velocity perturbation along magnetic field lines,
respectively, defined as

∆ = ∇ · ~v1,
�� ��2.99

Ψ =
(∇× ~v1) · ~B0

| ~B0|
.

�� ��2.100

Equation (2.97) governs magnetoacoustic waves, whereas Equation (2.98) stands for
Alfvén waves (Alfvén 1942). Now, we take the x-axis orientated along the magnetic
field direction, ~B0 = B0êx, and consider perturbations in the form of plane waves, so
they are written proportional to exp

(
i~k · ~r − iωt

)
, where ω is the frequency and ~k the

wave vector. With no loss of generality, we choose the z-axis so that the wave vector is
in the xz-plane, so ~k = kxêx +kz êz. For arbitrary ∆ and Ψ, Equations (2.97) and (2.98)
provide us with the dispersion relation for magnetoacoustic waves, namely

ω4 −
(
v2
A + c2s

)
k2ω2 + v2

Ac
2
sk

4 cos2 θ = 0,
�� ��2.101

and for Alfvén waves, namely
ω2 − k2

xv
2
A = 0,

�� ��2.102

with k2 = k2
x + k2

z and θ = arctan (kz/kx). From Equation (2.102), we see that Alfvén
waves propagate with a constant phase speed, ω/kx = vA. In addition, Alfvén waves have
no associated density, temperature, or gas pressure changes. Regarding magnetoacoustic
waves, the analytical solution of Equation (2.101) is

ω2 =
k2

2

[(
v2
A + c2s

)
±
√(

v2
A + c2s

)2 − 4v2
Ac

2
s cos2 θ

]
,

�� ��2.103

where the − sign corresponds to the slow wave and the + sign to the fast wave, whose
properties depend on the relation between cs and vA. For typical physical conditions in
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the solar corona and prominences, cs < vA, so the slow wave is essentially an acoustic
wave modified by the magnetic field and the fast wave is a magnetic wave which is
driven by magnetic pressure and weakly affected by acoustic effects. This behavior is
the contrary when cs > vA (see, e.g., Goossens 2003). Figure (2.3) displays a polar plot
of the phase velocity, ω/k, of Alfvén, fast, and slow waves for both cs < vA and cs > vA
cases. The limit values of the phase speed for propagation parallel and perpendicular to
magnetic field lines are labeled in Figure (2.3). Note that neither Alfvén nor slow waves
can propagate perpendicularly to the magnetic field.

Figure 2.3: Polar plot of the phase speed of Alfvén and magnetoacoustic waves. (a) Case
cs < vA. (b) Case cs > vA. In both cases, the horizontal and vertical axes correspond to
propagation parallel and perpendicular to magnetic field lines, respectively.

In the limit cs � vA, Equation (2.103) simplifies to

ω2 ≈ k2
xc

2
s ,

�� ��2.104

for the slow wave, and
ω2 ≈ k2v2

A,
�� ��2.105

for the fast wave. One must bear in mind that the distinction between Alfvén, fast, and
slow waves can be more ambiguous in a different equilibrium, since these three modes
are in general coupled (for a discussion on this issue in cylindrical geometry see Goossens
et al. 2009). The case of a uniform, unbounded medium represents a unique situation
in which the properties of the three modes are well-determined.
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Individual Oscillations of
Filament Threads
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3
Ideal Magnetohydrodynamic Waves in a

Cylindrical Magnetic Flux Tube

The purpose of this thesis is to study the efficiency of several mechanisms for the
damping of MHD waves in filament threads. Here, we study the ideal MHD wave
modes supported by a model representing a filament thread. In subsequent Chapters,
we analyze how the ideal solutions are affected by the presence of non-ideal effects. We
find the dispersion relation of the fast and slow magnetoacoustic modes (Sec. 3.1.2) and
obtain an approximation to the frequency in the thin tube limit (Sec. 3.1.3). Later,
we numerically solve the full dispersion relation and perform a parametric study of
the solutions (Sec. 3.2 and 3.3). Finally, we perform a seismological application by
comparing the theoretical predictions of the model with the observed oscillatory behavior
of several threads in a solar filament, allowing us to estimate the Alfvén speed and the
magnetic field strength of the filament (Sec. 3.4).

3.1 Model and basic equations

3.1.1 Equilibrium configuration

The model configuration considered here to represent a filament thread (Fig. 3.1)
is composed of a straight and homogeneous plasma cylinder of radius a with filament

Figure 3.1: Sketch of the cylindrical flux tube model considered in this Chapter.
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conditions (density ρf and temperature Tf) embedded in an unbounded and homogeneous
corona (density ρc and temperature Tc). We use a subscript 0 to refer to the equilibrium
quantities when the medium is not specified, and subscripts f and c to explicitly denote
filament and coronal values, respectively. The cylinder is unlimited in the longitudinal
direction, which is along the z-axis. The magnetic field is uniform and orientated along
the cylinder axis, ~B0 = B0êz, B0 being the same constant in the thread and in the coronal
medium. This model does not take into account the longitudinal inhomogeneity of the
plasma, as was considered in, e.g., Dı́az et al. (2002) and Dymova & Ruderman (2005).
See Chapter 7 for an estimation of the effect of the longitudinal plasma inhomogeneity.

The theory of ideal MHD waves supported by homogeneous, straight, and untwisted
cylindrical magnetic flux tubes has been developed in a number of papers, most of
them applied to the context of coronal loop oscillations (see the review by Ruderman
& Erdélyi 2009), during the last 30 years. Hydromagnetic surface waves propagating in
cylindrical tubes were studied by Wilson (1979) and Wentzel (1979), while the general
dispersion relation of MHD normal modes in a magnetic cylinder was derived by Wilson
(1980, 1981) for an non-magnetized environment, and Spruit (1982) for a magnetized
external plasma. These referred works focused their study on the mathematical proper-
ties of the dispersion relation and did not provide a complete account of the oscillatory
modes supported by the flux tube. In the case of trapped modes, a general investigation
was performed by Edwin & Roberts (1983), who plotted phase speed diagrams under
photospheric and coronal conditions, and obtained approximated expressions for the
frequency in the thin tube (TT) limit (see also Roberts et al. 1984). Regarding leaky
modes, i.e., wave solutions that are radiated away from the flux tube and therefore are
damped in time, they were briefly discussed by Spruit (1982), but more comprehen-
sive studies were performed by Cally (1986, 2003) and Ruderman & Roberts (2006a).
Subsequent investigations that have contributed to the field are, e.g., Abdelatif (1988),
Dı́az et al. (2004), and Goossens et al. (2009). Further studies have included addi-
tional effects in the model such as, e.g., stratification, magnetic twist, curvature, or
non-circular cross-sections. The reader is referred to Ruderman & Erdélyi (2009), and
references therein, for a detailed explanation of how these additional ingredients affect
the oscillatory modes.

By means of time-dependent simulations of the excitation of oscillations in cylindrical
flux tubes, Terradas et al. (2007) showed that the stationary state of the tube oscillation
is governed by the trapped normal modes (Edwin & Roberts 1983), whereas the transient
behavior between the initial excitation and the stationary state is dominated by high-
frequency leaky modes (Cally 1986, 2003). Since the time-scale of the transient phase is
much smaller that the period of the oscillations, it seems reasonable to restrict ourselves
to trapped modes in order to theoretically study the observed oscillations of filament
threads. It is worth mentioning here a very peculiar solution found by Cally (2003),
called the principal leaky kink (PLK) mode, which could be of relevance. According to
Cally (2003), the PLK mode has a frequency very similar to that of the trapped kink
mode for long wavelengths. However, the PLK mode is damped in time due to leakage
in the external medium, which makes it a possible candidate to explain the observed
damped transverse oscillations of coronal loops (and filament threads). Nevertheless,
Ruderman & Roberts (2006a) argued that the PLK mode is a physically meaningless
solution, although this issue is still under debate (Cally 2006; Ruderman & Roberts
2006b). We also discard the PLK mode in our investigation.
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3.1.2 Dispersion relation

The linear, ideal MHD magnetosonic modes supported by our flux tube model are
governed by Equation (2.97). By using cylindrical coordinates, namely r, ϕ, and z
for the radial, azimuthal, and longitudinal coordinates, respectively, Equation (2.97)
becomes

∂2

∂t2

[
∂2

∂t2
−
(
c2s + v2

A

)
∇2

]
∆ + c2sv

2
A

∂2

∂z2
∇2∆ = 0,

�� ��3.1

with ∆ = ∇ · ~v1, where ~v1 is the velocity perturbation vector. Next, since ϕ and z are
ignorable directions, we write

∆ = R(r) exp (imϕ+ ikzz − iωt) ,
�� ��3.2

where m is an integer that plays the role of the azimuthal wavenumber, kz is the longi-
tudinal wavenumber, ω is the frequency, and R(r) is a function accounting for the radial
dependence. In the absence of magnetic twist, solutions are degenerate with respect to
positive and negative values of m, so we only consider positive values of this parameter.
Now, applying this last expression to Equation (3.1), one finds that R(r) satisfies the
well-known Bessel equation of order m, namely
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c2T =
v2
Ac

2
s

v2
A + c2s

,
�� ��3.5

where cT is the so-called cusp (or tube) speed. The character of the solutions depends on
the sign of m2

0. Thus, oscillations are body-like if m2
0 > 0 and solutions of Equation (3.3)

are Bessel functions. On the contrary, if m2
0 < 0 oscillations are surface-like (or evanes-

cent) and solutions of Equation (3.3) are modified Bessel functions. The quantity m2
0 has

to be evaluated both in the filament thread, m2
f , and the coronal medium, m2

c . Since we
restrict ourselves to non-leaky modes, the evanescent condition in the corona is imposed
on the perturbations, namely m2

c < 0. On the other hand, for typical prominence and
coronal conditions, the ordering of sound and Alfvén speeds is csf < vAf < csc < vAc,
which does not permit the existence of surface waves within the thread, so m2

f > 0.
Then, R(r) is a piecewise function as follows

R(r) =
{
A1Jm(mfr) +A2Ym(mfr) if r ≤ a,
A3Im(ncr) +A4Km(ncr) if r > a,

�� ��3.6

with n2
c = −m2

c , A1, A2, A3, and A4 being complex constants. Jm and Ym are the Bessel
functions of the first and second kind, and Im and Km are the modified Bessel functions
of the first and second kind, respectively, of order m (Abramowitz & Stegun 1972). We
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seek for regular solutions at r = 0 and vanishing at infinity, so we set A2 = A3 = 0.
Expressions for the perturbed quantities as a function of ∆ and its radial derivative are

vr = −
(
ω2 − k2

zc
2
s

)
ω2m2

0

∂∆
∂r

,
�� ��3.7
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where vr, vϕ, and vz are the velocity perturbations, Br, Bϕ, and Bz are the magnetic
field perturbations, ρ1, p1, and T1 are the density, gas pressure, and temperature per-
turbations, and pm1 and pT1 are the magnetic pressure and total pressure perturbations,
respectively.

In order to obtain the dispersion relation that governs the behavior of wave modes,
we impose the continuity of the Lagrangian radial displacement, ξr = ivr/ω, and the
total pressure perturbation, pT1 , at the cylinder edge, r = a. After some algebra, the
following expression is obtained,

nc

ρc

(
ω2 − k2

zv
2
Ac

)K ′
m (nca)

Km (nca)
− mf

ρf

(
ω2 − k2

zv
2
Af

) J ′m (mfa)
Jm (mfa)

= 0,
�� ��3.18

where the prime denotes the derivative with respect to r. Equation (3.18) corresponds to
the well-known dispersion relation obtained by Edwin & Roberts (1983). The solutions
of Equation (3.18) can be classified according to several criteria. Considering the value
of the azimuthal wavenumber, solutions with m = 0 are called sausage modes, solutions
with m = 1 are kink modes, and solutions with m ≥ 2 are fluting modes. Considering
their magnetoacoustic properties, wave modes with a phase velocity, ω/kz, in the range
cTf < ω/kz < csf and whose dominant velocity component is along magnetic field
lines are identified as internal slow modes. These slow modes are not very sensitive
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to the value of m. On the other hand, the modes with vAf < ω/kz < vAc, which are
mainly polarized transversely to magnetic field lines, are usually denoted as fast modes.
However, Goossens et al. (2009) pointed out that the mode withm = 1, the so-called kink
mode, has mixed alfvénic and fast properties, the magnetic tension being the dominant
restoring force. For this reason, we use the more general expression transverse modes,
based on their displacement polarization, to refer to solutions with vAf < ω/kz < vAc.

3.1.3 The thin tube approximation

Equation (3.18) is a transcendental equation that has to be solved numerically. It
is possible to go further analytically by considering the thin tube (TT) approxima-
tion, i.e., kza � 1. In terms of the wavelength, λz, the TT approximation applies for
λz/a� 1. We perform a first order, asymptotic expansion for small arguments of the
Bessel functions in Equation (3.18) for m 6= 0. The dispersion relation then becomes

ρf

(
ω2 − k2

zv
2
Af

)
+ ρc

(
ω2 − k2

zv
2
Ac

)
= 0,

�� ��3.19

whose analytical solution is

ω2 =
ρfv

2
Af + ρcv

2
Ac

ρf + ρc
k2

z ≡ ω2
k,

�� ��3.20

where ωk is the so-called kink frequency. Note that Equation (3.20) is only valid for
transverse modes with m 6= 0, so neither fast sausage nor slow modes are described.

3.2 Dispersion diagrams and eigenfunctions

Here, we compute phase velocity diagrams of the solutions of Equation (3.18) as
a function of the dimensionless longitudinal wavenumber, kza. As mentioned in the
Introduction (Chap. 1), the observed width of filament threads is in the range 0′′.2−0′′.6
(Lin 2004), and therefore a ranges from 75 km to 375 km, approximately. On the other
hand, the detected wavelengths of prominence oscillations are between 5× 103 km and
105 km (Oliver & Ballester 2002). One can combine both quantities (the wavelength
and the thread width) into the dimensionless quantity kza, and compute its upper and
lower limits. So, for a = 75 km, 5 × 10−3 . kza . 9 × 10−2, while for a = 375 km,
2×10−2 . kza . 4×10−1. Thus, taking into account both intervals and considering that
thinner threads than those resolved by present-day telescopes might exist, the relevant
range of kza of prominence oscillations covers two orders of magnitude and corresponds
to 10−3 . kza . 10−1. This range of kza contains all realistic values of the wavelength
and the thread width. Thus, the results within this range of kza will deserve special
attention.

The following equilibrium parameters are considered in all computations: T̃f =
104 K, ρf = 5× 10−11 kg m−3, T̃c = 2× 106 K, ρc = 2.5× 10−13 kg m−3, B0 = 5 G, and
a = 100 km. The gas pressure is p0 = 4.15 × 10−3 Pa, which is uniform everywhere in
the equilibrium, and β ≈ 0.05. Hence, the density contrast between the internal and ex-
ternal plasmas is ρf/ρc = 200, while their characteristic speeds are: cTf = 11.56 km s−1,
csf = 11.76 km s−1, vAf = 63.08 km s−1, cTc = 163.51 km s−1, csc = 166.33 km s−1, and
vAc = 892.06 km s−1.
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3.2.1 Transverse modes

Figure 3.2: Normalized phase velocity, ω/kzcsf , as a function of kza corresponding to
transverse modes with m = 0 (sausage), m = 1 (kink), and m = 2 (first fluting). FB
and 1B denote fundamental and first branch, respectively. Note the forbidden region
cTc < ω/kz < csc where evanescent waves in the corona are not possible. The shaded
zone corresponds to the relevant range of kza of prominence oscillations. Note that both
axes are in logarithmic scale.

First, we start with transverse modes. Figure 3.2 displays the phase velocity of
modes with m = 0, 1, and 2. The phase velocity of the trapped solutions is in the range
vAf < ω/kz < vAc, although it is worth mentioning the existence of a forbidden region
at cTc < ω/kz < csc, where the evanescent condition is not fulfilled because m2

c > 0.
Solutions have frequency cut-offs when the forbidden region is reached. The region
cTc < ω/kz < csc is inhabited by a collection of leaky modes with slow-like properties,
whose behavior is dominated by coronal conditions, and whose amplitude within the flux
tube is negligible (see Soler et al. 2007a, for a discussion of these modes in Cartesian
geometry). We do not study these leaky coronal slow modes here.

For a fixed m, solutions can be classified according to the number of zeros of the
total pressure perturbation in the radial direction (for r 6= 0). Thus, the solution
without zeroes is the radially fundamental mode, the solution with one zero is the first
radial harmonic, and so on. These radial harmonics are here called branches. We only
have considered the fundamental and first branches in Figure 3.2. The behavior of
all modes for kza � 1 is similar. The phase velocity of all of them tends toward the
internal Alfvén speed as kza increases. On the contrary, the behavior for kza � 1 is
substantially different. The only solutions that exist as non-leaky waves for kza � 1
are the fundamental branches of modes with m 6= 0. Note that the rest of solutions are
leaky, i.e., ω/kz > vAc, in the relevant range of kza and for smaller values. Therefore,
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Figure 3.3: Eigenfunctions of perturbations (a) vr, (b) vϕ, (c) vz, and (d) pT1 of the
transverse modes for kza = 10−2. The solid black line corresponds to the kink mode
and the dashed blue line is for the first fluting mode. The vertical dotted line represents
the edge of the cylinder. Arbitrary units have been used.

we discard sausage (m = 0) modes, and all the harmonic branches, from our subsequent
analysis. For the sake of simplicity, we hereafter refer to the fundamental branches
of the transverse modes with m = 1 and m = 2 as the kink and first fluting modes,
respectively.

The phase velocity of all the fundamental branches with m 6= 0 for kza � 1 agrees
with the value obtained in the TT case from Equation (3.20), namely

ck ≡
ωk

kz
=

√(
ρfv

2
Af + ρcv2

Ac

)
(ρf + ρc)

,
�� ��3.21

where ck is the so-called kink speed. For a uniform magnetic field, Equation (3.21) can
be rewritten as

ck = vAf

√
2

1 + ρc/ρf
.

�� ��3.22

In the case of filament threads, ρf � ρc, so the kink speed approximately is ck ≈
√

2vAf .
For the considered parameters, one has that ck ≈ 89.2 km s−1.

Next, we study the eigenfunctions. Figure 3.3 shows the perturbations vr, vϕ, vz,
and pT1 of both the kink and first fluting modes for kza = 10−2. The other perturbations
are proportional to the plotted ones (see Eqs. [3.7]–[3.17]). Regarding the kink mode,
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the amplitudes of both vr and vϕ are almost uniform within the cylinder, meaning that
the flux tube moves almost like a solid block. On the contrary, the amplitudes of vr and
vϕ of the first fluting mode are zero at the cylinder axis and maximum at the cylinder
boundary, so this mode behaves in practice like a surface wave, although we recall that
this solution satisfies m2

f > 0. This result for the first fluting mode stands for other
fluting modes with larger m. In addition, vz � vr and vz � vϕ for both the kink and
fluting modes, meaning that they are mainly transversely polarized. We can see that
the kink mode is the only solution that significantly displaces the cylinder axis, then
being a good candidate to be related to the transverse oscillations of filament threads.
Finally, note that both vϕ and vz are discontinuous at the cylinder boundary.

3.2.2 Longitudinal slow modes

We turn our attention to slow modes. Figure 3.4 shows the phase velocity diagram of
slow modes with m = 0, 1, and 2, where only the fundamental branches are considered.
The slow mode phase velocities are enclosed in the narrow range cTf < ω/kz < csf . The
behavior of all solutions is very similar. Their phase velocity tends toward csf for kza�
1, and toward cTf for kza � 1. Note that the slow mode spectrum is anti-sturmian,
with the fundamental branches having a larger frequency than their corresponding radial
harmonics. In the relevant range of kza, one finds that ω/kz ≈ cTf , but since cTf/csf ≈
0.983 for the present equilibrium parameters, a good approximation for the slow mode
frequency is also ω/kz ≈ csf for any value of kz and m.

Figure 3.4: Normalized phase velocity, ω/kzcsf , as a function of kza corresponding to
slow modes with m = 0, 1, and 2. Only the fundamental branches are plotted. The
shaded zone corresponds to the relevant range of kza of prominence oscillations. Note
that the horizontal axis is in logarithmic scale.

The eigenfunctions of the slow modes with m = 0, 1, and 2 are displayed in Fig-
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ure 3.5. As expected, we clearly see that the dominant velocity perturbation is vz,
which is along magnetic field lines. In addition, we obtain that vz ≈ 0 in the coronal
medium, meaning that slow modes are essentially confined within the cylinder and are
almost insensitive to the physical conditions of the corona. By comparing Figures 3.3d
and 3.5d, we see that, for similar velocity amplitudes, the total pressure perturbation
is much larger for the slow modes than for the kink modes, obtaining the well-known
conclusion that kink modes are almost incompressible disturbances while slow modes
are compressible waves.

Figure 3.5: Eigenfunctions of perturbations (a) vr, (b) vϕ, (c) vz, and (d) pT1 of the slow
modes. The line styles represent m = 0 (red dotted), m = 1 (solid black), and m = 2
(dashed blue). The vertical dotted line represents the edge of the cylinder. Arbitrary
units have been used.

3.3 Oscillatory periods

Apart from the phase velocity and the polarization of motions, the oscillatory periods
related to the different eigenmodes of the flux tube allow us to compare the theoretical
predictions with the periods reported by the observers (see Sec. 1.4.2). The period, P ,
is computed from the frequency as

P =
2π
ω
.

�� ��3.23

We must note that the precise value of the period depends on the physical properties
considered in the model. Here, we consider the same physical conditions used in previous
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Sections. We compute the periods of the kink mode and the slow mode with m = 1
(Fig. 3.6). Since there are very few determinations of the wavelength in the case of
thread oscillations, we plot the period for the whole range of detected wavelengths of
small-amplitude prominence oscillations. For comparative purposes, the different ranges
of periods usually detected in prominence oscillations are indicated in Figure 3.6.

We see that the kink mode period is consistent with the typical periods of transverse
thread oscillations (2−10 min), which are in the range of short periods usually reported
in low-resolution observations of prominence oscillations. Again, we conclude that the
kink mode is a good candidate to be responsible of the observed transverse thread
oscillations.

On the contrary, the period related to the slow mode is larger. Although the slow
mode period is compatible with the intermediate and long periods of small amplitude
prominence oscillations, these intermediate- and long-period oscillations detected with
low spatial resolutions have not been related yet to fine structure motions. It is likely
that these intermediate- and long-period oscillations are related to global eigenmodes of
the whole prominence instead of local oscillations of fine structures.

Figure 3.6: Period of the kink and slow (m = 1) modes in the range of typically observed
wavelengths of prominence oscillations, λz. The horizontal dashed lines separate the
period values according to the typical classification of short-, intermediate-, and long-
period oscillations.

3.4 Seismological application to transverse thread oscillations1

3.4.1 Observations

From recent high-resolution observations of a quiescent filament obtained with the
Swedish 1m Solar Telescope in La Palma, Lin et al. (2009) detected swaying motions of

1This Section is based on the results of Y. Lin, R. Soler, O. Engvold, J. L. Ballester, Ø. Langangen,
R. Oliver, & L. H. M. Rouppe van der Voort 2009, Swaying threads of a solar filament, ApJ, 704, 870.
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Figure 3.7: (a) Sharpened Hα image of the target filament. Three of the ten studied
threads are marked by solid white lines, whereas the dashed lines denote the location
of the cuts. (b) Fitted sinusoidal curves of the temporal variation of the position of the
thread at both cuts of thread # 2. Adapted from Figures 1 and 2 of Lin et al. (2009).

individual filament threads in the plane of the sky. While extensive details regarding the
observational technique are given by Lin et al. (2009), we focus here on the interpretation
of their observations. By means of Hα filtergrams, many thin threads in the filament
were resolved (see Fig. 3.7a). Sequences of Hα images showed that some threads swayed
back and forth in the plane of the sky. Ten of such swaying threads were selected for
a more in-depth investigation. For each selected thread, two or three perpendicular
cuts were made to measure the properties of possible propagating waves. The temporal
variations of the positions of the threads within the cuts were fitted by sinusoidal curves
(see Fig. 3.7b), from which the period, P , and the amplitude, A, of the wave were both
derived (see the second and fourth columns of Table 3.1). The oscillatory character of
these motions was checked by means of Doppler signals simultaneously obtained from
the same filament threads, which revealed oscillatory periods similar to those computed
from the Hα sequences (further details are given by Lin et al. 2009). Assuming that the
wave is propagating along the thread, the phase difference between two fitted curves at
different cuts represents the time interval, T , the wave needs to travel between the two
cuts. Given the distance, L, between the two cuts, the wave phase velocity was computed
as vph = L/T (see the third column of Table 3.1). From the results of Table 3.1, it is
noticeable that the amplitude of motions at the two cuts of some threads, e.g., threads
# 3 and 10, are significantly different. As suggested by Lin et al. (2009), it is likely
that the change of the amplitude is caused by the spatial damping of the wave as it
propagates along the thread, but unfortunately this issue was not studied in detail.

3.4.2 Theoretical interpretation

Such as shown in the last Sections, the kink mode is among the possible wave modes
the only one that can produce a significant transverse displacement of the cylinder
axis. Hence, the kink mode is the best candidate for an interpretation of the present
observations. Moreover, the kink mode produces short-period oscillations of the order
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Thread-Cut P (min) vph (km s−1) A (km) vAf (km s−1) B0 (G)
1-c1 3.5 ± 0.1 16 ± 3 79 ± 6 12 ± 2 0.9 ± 0.3
1-c2 3.9 ± 0.1 70 ± 7
2-c3 4.72 ± 0.05 20 ± 6 79 ± 7 14 ± 4 1.1 ± 0.5
2-c4 4.50 ± 0.03 76 ± 6
3-c5 3.9 ± 0.1 24 ± 6 67 ± 10 17 ± 4 1.3 ± 0.5
3-c6 4.4 ± 0.1 110 ± 9
4-c7 3.66 ± 0.04 36 ± 6 88 ± 4 26 ± 4 2.0 ± 0.4
4-c8 3.69 ± 0.04 86 ± 4
5-c9 3.76 ± 0.02 57 ± 9 96 ± 3 41 ± 6 3.2 ± 0.7
5-c10 3.78 ± 0.03 81 ± 3
6-c11 2.7 ± 0.1 28 ± 12 57 ± 4 20 ± 8 1.6 ± 0.9
6-c12 4.0 ± 0.1 73 ± 5
7-c13 2.0 ± 0.1 62 ± 10 52 ± 3 44 ± 7 3.5 ± 0.8
7-c14 1.9 ± 0.1 59 ± 3
7-c15 2.0 ± 0.1 52 ± 4
8-c16 3.1 ± 0.1 40 ± 6 56 ± 4 29 ± 4 2.3 ± 0.5
8-c17 3.0 ± 0.1 34 ± 2
9-c18 2.8 ± 0.1 20 ± 3 34 ± 3 14 ± 2 1.1 ± 0.2
9-c19 2.6 ± 0.1 57 ± 4
10-c20 5.4 ± 0.1 28 ± 9 88 ± 3 20 ± 6 1.6 ± 0.7
10-c21 5.0 ± 0.2 58 ± 3

Table 3.1: For the 10 selected Hα swaying threads, the period (P ), phase velocity (vph),
and amplitude (A) of the detected propagating waves, along with estimations of the
Alfvén speed (vAf) by considering Equation (3.24), and the magnetic field strength (B0)
by assuming ρf = 5× 10−11 kg m−3. Adapted from Tables 1 and 2 of Lin et al. (2009).

of minutes for typical filament plasma conditions (see Fig. 3.6), which is also compatible
with the measured periods. Since the observed threads appear to be very thin and
long structures, it seems reasonable to consider the thin tube approximation. According
to Equation (3.22) the kink mode phase velocity is ck = vAf [2/ (1 + ρc/ρf)]

1/2. Now,
assuming that the thread oscillations observed from the Hα sequences are the result of
a propagating kink mode, the measured phase velocity, vph, can be related to the kink
speed, so ck = vph. However, since vAf and the ratio ρf/ρc are both unknown, we cannot
obtain a unique solution from the last Equation. Nevertheless, we have to bear in mind
that the ratio ρf/ρc is large in the case of filament threads. A value typically considered
is ρf/ρc ≈ 200. Figure 3.8a displays the ratio c2k/v

2
Af as a function of ρf/ρc. We see

that for a large and realistic density contrast, the curve becomes flat and so the ratio
c2k/v

2
Af is then almost independent of the density contrast. In such a situation, the factor

[2/ (1 + ρc/ρf)]
1/2 ≈

√
2 and so the kink speed directly depends on the filament Alfvén

speed, ck ≈
√

2vAf . Therefore, it is possible to give a direct seismological estimation of
the thread Alfvén speed from the measured phase velocity as

vAf ≈ vph/
√

2.
�� ��3.24
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The technique of MHD seismology has been applied by some authors to obtain infor-
mation of the plasma physical conditions in the context of coronal loop oscillations
(e.g., Nakariakov & Ofman 2001; Arregui et al. 2007a, 2008; Goossens et al. 2008) and
prominence oscillations (Terradas et al. 2008). Since the density contrast in the case
of coronal loops typically has a small value, the factor with the density ratio cannot
be dropped from Equation (3.22) and it is not possible to give a direct estimation of
the Alfvén speed from the observed kink speed. However, the much larger density of
filament threads allows us to provide a more accurate determination of the Alfvén speed.

Figure 3.8: (a) Ratio c2k/v
2
Af as a function of the density contrast, ρf/ρc. The horizontal

dashed line corresponds to the value of the ratio c2k/v
2
A for ρf/ρc →∞ and the vertical

dotted line represents ρf/ρc = 200. (b) Magnetic field strength, B0, as a function of the
filament thread density, ρf , corresponding to threads # 1, 3, 5, and 7.

3.4.3 Estimation of the Alfvén speed and the magnetic field strength

The fifth column of Table 3.1 contains an estimation of the Alfvén speed of each
swaying thread observed in the Hα sequences by taking Equation (3.24) into account.
We see that the Alfvén speed varies in a wide range, which suggests that the physical
properties, i.e., density, magnetic field strength, etc., significantly change in different
threads of the filament. Once the Alfvén speed is determined, we have a relation between
the magnetic field strength and the thread density, i.e., B0 = vAf

√
µρf . Since the thread

density is an unknown parameter, we cannot uniquely determine the magnetic field
strength or vice versa. Figure 3.8b shows the dependence of B0 with ρf corresponding
to four selected threads. The density is allowed to vary in a wide range, 10−12 kg m−3 <
ρf < 10−9 kg m−3, and subsequently the magnetic field strength is in the range 0.1 G .
B0 . 20 G. This range agrees with the usually reported values of the magnetic field
strength in quiescent prominences and filaments (e.g., Patsourakos & Vial 2002). By
assuming a typical value of ρf = 5×10−11 kg m−3 for the thread density and considering
the results for the ten studied threads, one obtains a magnetic field strength which
varies in the range 0.5 G . B0 . 5 G (see the sixth column of Table 3.1). Although we
have to be cautious with the values obtained in this very rough estimation, the present
results suggest that the magnetic field in the filament is not homogeneous and could
largely vary between threads. Also, this could happen for the density, but the results
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are more sensible to magnetic field strength variations than to density variations. In
addition, high-resolution observations suggest that the plasma parameters may vary
along individual threads, which may affect the derived Alfvén speed and magnetic field
strength.

3.5 Conclusion

In this Chapter, we have studied the properties of ideal MHD waves in a cylindrical
magnetic flux tube representing a prominence fine-structure. By comparing the the-
oretical properties of these waves with the observations, i.e., periods, polarization of
motions, etc., we conclude that the kink MHD mode is the best candidate to be respon-
sible for the observed short-period, transverse oscillations of filament threads. On the
other hand, slow-like modes have larger periods than those typically observed in thread
oscillations. In the context of this interpretation, we related the observations of swaying
motions of filament threads by Lin et al. (2009) to propagating kink modes, and gave
a seismological estimation of the Alfvén speed by considering the values of the phase
velocity reported by Lin et al. (2009). The obtained values of the Alfvén speed and the
magnetic field strength are consistent with previous determinations of Alfvén speeds in
prominences.

The next Chapters focus on the study of the damping phenomenon by taking different
mechanisms into account and by assessing their efficiency for the damping of MHD waves
in cylindrical filament threads.
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4
Non-adiabatic Magnetohydrodynamic Waves in a

Filament Thread with Mass Flow∗

The aim of the present Chapter is to describe the effect of both mass flow and
non-adiabatic effects on the oscillations supported by an individual prominence thread.
Non-adiabatic effects are sometimes neglected when MHD waves are investigated in
theoretical works. The adiabatic assumption is suitable when time-scales associated
with non-adiabatic mechanisms are much larger than the typical oscillation time-scale.
Nevertheless, depending on the medium physical properties, this condition is not always
satisfied and the consideration of non-adiabatic effects is important to perform a realistic
description of the wave behavior. For example, the importance of radiative losses and
thermal conduction can be roughly estimated through two dimensionless parameters
introduced by De Moortel & Hood (2004), called the thermal ratio, d, and the radiation
ratio, r, which are essentially the ratio of the sound travel time (τs = λ0/cs) to the
conduction time-scale (τc = λ2

0p0/[(γ − 1)κ‖T0]) and to the radiation time-scale (τr =
γp0/[(γ − 1)ρ2

0χ
∗Tα

0 ]), respectively, and where λ0 is a typical length-scale and the rest
of parameters are defined in Chapter 2. Then,

d =
(γ − 1)κ‖T0ρ0

γ2p2
0τs

=
1
γ

τs
τc
,

�� ��4.1

r =
(γ − 1)τsρ2

0χ
∗Tα

0

γp0
=
τs
τr
.

�� ��4.2

For typical physical conditions of the solar corona, d ≈ 4.83 and r ≈ 6 × 10−5, while
for prominence conditions, d ≈ 10−6 and r ≈ 0.82. These values suggest that thermal
conduction can have an important role in coronal conditions, whereas radiation should
be taken into account in prominence plasmas.

Here, we study the non-adiabatic magnetoacoustic wave modes supported by the
same cylindrical filament thread model adopted in Chapter 3. We obtain an analytical
dispersion relation describing slow, fast, and thermal modes (Sec. 4.1.2). We perform
several approximations and obtain analytical expressions for the ratio of the damping
time to the period of the three solutions (Sec. 4.1.4). Later, we numerically solve the
dispersion relation and compare the numerical results with the approximations. The
efficiency of non-adiabatic effects on the damping of the oscillations is assessed by com-
paring the theoretical damping ratios with those reported in observations (Sec. 4.2). In
addition, the effect of mass flows along the filament thread is also studied (Sec. 4.3).

∗This Chapter is based on the results of R. Soler, R. Oliver, & J. L. Ballester 2008, Nonadiabatic
Magnetohydrodynamic Waves in a Cylindrical Prominence Thread with Mass Flow, ApJ, 685, 725.
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4.1 Model and basic equations

4.1.1 Equilibrium configuration

The model configuration is that considered in Chapter 3, i.e., a homogeneous and infi-
nite cylinder of radius a with density ρf and temperature Tf , embedded in an unbounded
and also homogeneous corona with density ρc and temperature Tc. The magnetic field
is uniform and orientated along the cylinder axis, ~B0 = B0êz. Here, a steady mass flow
is assumed along the z-direction, whose flow velocity can be different in the thread and
in the corona. Thus, ~vf = vf êz and ~vc = vcêz correspond to the steady flow in the flux
tube and in the corona, respectively, with vf and vc constants. A subscript 0 is used
when there is no need to specify the medium.

The effect of steady mass flows on the oscillatory modes of magnetic structures
has been theoretically investigated by a number of authors (e.g., Goossens et al. 1992;
Nakariakov & Roberts 1995; Erdélyi et al. 1995; Terra-Homem et al. 2003; Terradas et
al. 2010, among other works). The most relevant studies for the present investigation
are Nakariakov & Roberts (1995), who studied the effect of a steady flow on waves
in coronal and photospheric slabs, and Terra-Homem et al. (2003), who extended the
former study to cylindrical geometry. In addition to producing a shift of the oscillatory
frequency, both papers show that the main effect of the flow is to break the symmetry
between forward (parallel) and backward (anti-parallel) wave propagation to the flow
direction and, for sufficiently strong flows, to forbid anti-parallel propagation of slow
modes.

Carbonell et al. (2009) performed the first attempt to study the combined effect of
both non-adiabatic mechanisms and steady flows on the time damping of slow and ther-
mal waves in a homogeneous, unbounded prominence plasma. These authors found that
the mass flow does not modify the damping time of both slow and thermal waves with
respect to the case without flow, but the period of the slow wave increases dramatically
for flow velocities close to the sound speed. Moreover, the thermal disturbance behaves
as a propagating mode in the presence of flow. The present work goes a step forward
with respect to Carbonell et al. (2009) since a more complex geometry is assumed here.

4.1.2 Dispersion relation

The non-adiabatic version of the energy equation (Eq. [2.85]) is considered. We
assume that the plasma is fully ionized, and so the cross-field or perpendicular thermal
conduction is absolutely negligible. Since we restrict ourselves to the linear regime, the
terms corresponding to Joule and viscous heating are not present in the linearized energy
equation, namely

∂p1

∂t
+ ρ0v0

∂p1

∂z
− c2s

(
∂ρ1

∂t
+ ρ0v0

∂ρ1

∂z

)
+ (γ − 1)

[
ρ0Lρρ1 + ρ0LTT1 − κ‖

∂2T1

∂z2

]
= 0,

�� ��4.3

where all symbols have the same meaning as in Chapter 3, and Lρ and LT are the
partial derivatives of the heat-loss function with respect to density and temperature,
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respectively, namely

Lρ =
(
∂L

∂ρ

)
T

, LT =
(
∂L

∂T

)
ρ

.
�� ��4.4

Therefore, parallel thermal conduction to the magnetic field, radiative losses, and heat-
ing are considered as non-adiabatic effects. Since the results for different heating scenar-
ios do not show significant differences for prominence conditions (Carbonell et al. 2004;
Terradas et al. 2005), here we restrict ourselves to a constant heating per unit volume
(a∗ = b∗ = 0).

Assuming perturbations proportional to exp (ikzz + imϕ− iωt), one can combine
Equation (4.3) with the Equation of state (Eq. [2.86]) to obtain the following relation
between the pressure and density perturbations

p1 = Λ2
0 ρ1,

�� ��4.5

with

Λ2
0 =

γ̃p0

ρ0
, γ̃ =

[
(γ − 1)

(
κ̃‖k

2
z + ωT − ωρ

)
− iγΩ0

(γ − 1)
(
κ̃‖k2

z + ωT

)
− iΩ0

]
,

�� ��4.6

where Ω0 = ω − v0kz is the Doppler-shifted frequency (Terra-Homem et al. 2003), γ̃ is
here called the non-adiabatic index, and κ̃‖, ωρ, and ωT are defined as

κ̃‖ ≡
T0

p0
κ‖, ωρ ≡

ρ0

p0
ρ0Lρ, ωT ≡

ρ0

p0
T0LT .

�� ��4.7

The complex quantity Λ0 is here called the non-adiabatic sound speed. The real part of
Λ0 plays the role of the sound speed when non-adiabatic effects are present. By means
of this definition, one can see that the effect of non-adiabatic terms is to modify the
medium sound speed. Hence, it is expected that non-adiabatic effects most probably
affect slow modes since they are mainly governed by acoustic effects. For the same
reason, linear Alfvén waves are not damped by non-adiabatic mechanisms and are not
considered in the present investigation. If non-adiabatic terms are neglected, γ̃ = γ and
Λ0 = cs. With the help of Equation (4.6), we can follow again the treatment by Lighthill
(1960) as in Chapter 3, and arrive at the governing equation of magnetoacoustic waves,
namely

Υ2
[
Υ2 −

(
Λ2

0 + v2
A

)
∇2
]
∆ + Λ2

0v
2
A

∂2

∂z2
∇2∆ = 0,

�� ��4.8

where ∆ = ∇ · ~v1 and Υ is a linear operator defined as

Υ =
∂

∂t
+ v0

∂

∂z
.

�� ��4.9

Note that Equation (4.8) reduces to Equation (3.1) when both the effect of the flow and
the non-adiabatic effects are dropped, i.e., v0 = 0 and Λ0 = cs. The rest of perturbations
depend on ∆ according to Equations (3.7)–(3.17) if the replacements ω → Ω0 and
cs → Λ0 are performed. Thus, by writing ∆ = R(r) exp (ikzz + imϕ− iωt), we see that
R(r) satisfies again the Bessel Equation (Eq. [3.3]), with the radial wavenumber m0

defined now as

m2
0 =

(
Ω2

0 − k2
zv

2
A

) (
Ω2

0 − k2
zΛ

2
0

)(
v2
A + Λ2

0

) (
Ω2

0 − k2
z c̃

2
T

) ,
�� ��4.10
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where c̃T is the non-adiabatic cusp speed defined as

c̃2T =
v2
AΛ2

0

v2
A + Λ2

0

.
�� ��4.11

Due to the presence of non-adiabatic effects, the radial wavenumber squared, m2
0, is

now a complex quantity. Hence, no pure body-like or surface-like waves are possible in
non-adiabatic magnetohydrodynamics. If one assumes that |<(m2

0)| > |=(m2
0)| provided

that non-adiabatic effects produce a small correction to the adiabatic wave modes, the
dominant wave character depends on the sign of <(m2

0). Within the cylinder, oscillations
are mainly body-like if <(m2

f ) > 0, whereas if <(m2
f ) < 0 oscillations are mainly surface-

like. Note that, as for ideal waves, the situation <(m2
f ) < 0 is not possible for prominence

conditions, meaning that perturbations are mainly body-like within the filament thread.
On the other hand, the condition of outgoing waves whose amplitude is evanescent in
the corona requires <(m2

c) < 0 and < (mc/Ωc) > 0. Then, R(r) can be expressed as the
following piecewise function

R(r) =
{
A1Jm(mfr), if r ≤ a,
A2Km(ncr), if r > a,

�� ��4.12

with n2
c = −m2

c , A1 and A2 being complex constants. The dispersion relation is finally
obtained by imposing the continuity of the Lagrangian radial displacement, ξr = ivr/Ω0,
and the total pressure perturbation, pT1 , at the cylinder edge, r = a. Thus,

nc

ρc

(
Ω2

c − k2
zv

2
Ac

)K ′
m (nca)

Km (nca)
− mf

ρf

(
Ω2

f − k2
zv

2
Af

) J ′m (mfa)
Jm (mfa)

= 0,
�� ��4.13

where the prime denotes derivative with respect to r. If the effect of the flow is dropped,
i.e., Ω2

f = Ω2
c = ω2, Equation (4.13) is formally identical to the dispersion relation in the

ideal case (Eq. [3.18]) because all the terms related to non-adiabatic effects are enclosed
in the present definitions of mf and nc. The solution of Equation (4.13) for real kz and
m is a complex frequency, ω = ωR+iωI, damped solutions corresponding to ωI < 0. The
oscillatory period, P , damping time, τD, and the ratio of both quantities are computed
as

P =
2π
|ωR|

, τD =
1
|ωI|

,
τD
P

=
1
2π
|ωR|
|ωI|

.
�� ��4.14

In the absence of flow, the complex oscillatory frequencies obtained by solving Equa-
tion (4.13) appear in pairs, ω1 = ωR + iωI and ω2 = −ωR + iωI. The solution ω1

corresponds to a wave propagating toward the positive z-direction (parallel to magnetic
field lines), whereas ω2 corresponds to a wave that propagates toward the negative z-
direction (anti-parallel to magnetic field lines). For short, we call them forward and
backward waves, respectively. Both forward and backward wave modes are equivalent
and show exactly the same physical properties in the absence of flow. However, the
symmetry between waves whose propagation is parallel or anti-parallel with respect to
the flow direction is broken by the presence of flows.

4.1.3 The non-adiabatic sound speed

The non-adiabatic sound speed, Λ0 = (γ̃p0/ρ0)
1/2, plays an important role in the

present investigation. Its value depends on the non-adiabatic mechanisms through the
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quantity γ̃ given by Equation (4.6). In the absence of flow, one must replace Ω0 by ω
in Equation (4.6). We have that γ̃ depends on the frequency, so each eigenmode feels
a different value of the non-adiabatic sound speed. Since the precise value of the sound
speed is only relevant for slow modes, let us consider ω ≈ cskz in Equation (4.6). Then,

γ̃ ≈

[
(γ − 1)

(
κ̃‖k

2
z + ωT − ωρ

)
− iγcskz

(γ − 1)
(
κ̃‖k2

z + ωT

)
− icskz

]
.

�� ��4.15

We can evaluate γ̃ in different limits. For kza � 1, the terms with k2
z and kz can be

neglected in Equation (4.15), which can be rewritten by taking into account that ωT and
ωρ are related through the exponent of the radiative losses function, α, as ωT = αωρ.
Hence,

γ̃ ≈ α− 1
α

.
�� ��4.16

On the other hand, for kza � 1 the terms with k2
z are the dominant ones in Equa-

tion (4.15), so γ̃ becomes
γ̃ ≈ 1.

�� ��4.17

Therefore, the non-adiabatic sound speed is Λ0 ≈
[(

α−1
α

)
p0/ρ0

]1/2 for kza � 1, and
Λ0 ≈ (p0/ρ0)

1/2 for kza� 1. The value of Λ0 for large wavenumber corresponds to the
isothermal sound speed, whereas the value for small kz depends on the radiative regime
by means of the exponent α.

Now, we assume prominence conditions and numerically compute < (Λf) as a func-
tion of kza using Equation (4.15) (see Fig. 4.1a). The behavior of < (Λf) in the limits of
small and large kza is consistent with our analytical estimations (Eqs. [4.16] and [4.17]),
while for intermediate kza the non-adiabatic sound speed coincides with the adiabatic
sound speed. To shed light on this result, Figure 4.1b shows < (Λf) for three different
prominence radiative regimes and in the case without thermal conduction, i.e., κ‖ = 0.
As expected, for small kza and including the relevant range, the non-adiabatic sound
speed is governed by radiation. On the other hand, for large kza the dominant mecha-
nism is thermal conduction. Note that although thermal conduction is responsible for
the behavior of < (Λf) in the case of large kza, the isothermal value of the sound speed
is independent on the value of κ‖ (when κ‖ 6= 0, obviously).

4.1.4 Analytical approximations

Transverse modes

As in the ideal case, the dispersion relation (Eq. [4.13]) is a transcendental equation
that has to be solved numerically. Some analytical progress is possible in the TT case.
A first order, asymptotic expansion for kza � 1 and m 6= 0 of the Bessel functions of
Equation (4.13) gives

ρf

(
Ω2

f − k2
zv

2
Af

)
+ ρc

(
Ω2

c − k2
zv

2
Ac

)
= 0.

�� ��4.18

Taking into account that Ωf = ω − vfkz and Ωc = ω − vckz, the analytical solution of
Equation (4.18) is

ω =
(ρfvf + ρcvc)

(ρf + ρc)
kz ±

[(
ρfv

2
Af + ρcv

2
Ac

)
(ρf + ρc)

k2
z −

ρfρc

(ρf + ρc)
2 (vf − vc)2 k2

z

]1/2

,
�� ��4.19
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Figure 4.1: Real part of the prominence non-adiabatic sound speed as a function of
kza. (a) Result considering the Prominence (1) radiative regime. The horizontal lines
denote the limit values of the non-adiabatic sound speed. (b) Results for the different
prominence radiative regimes. For comparative purposes, the result in the absence of
thermal conduction (κ‖ = 0) is also computed for the Prominence (1) radiative regime.
The shaded zone corresponds to the relevant range of kza of prominence oscillations.

where the + and − signs correspond to forward and backward waves, respectively. When
vf = vc = 0, Equation (4.19) reduces to Equation (3.20). Note that Equation (4.19)
contains no terms related to non-adiabatic effects, meaning that transverse modes with
m 6= 0 are undamped in the TT limit. This result allows us to predict that the kink
mode damping by non-adiabatic mechanisms is very inefficient for realistic values of the
wavenumber. It is possible to approximate Equation (4.19) in the case vc = 0, vf � vAf ,
and ρf � ρc, namely

ω ≈ vfkz ± ωk,
�� ��4.20

with ωk the kink mode frequency in the absence of flow, meaning that the kink mode
frequency shift is approximately linear with vf for small values of the flow velocity.

On the other hand, it is possible to obtain from Equation (4.19) the critical value of
the flow velocity that leads to the Kelvin-Helmholtz (KH) instability, namely

(vf − vc)KH =
√
ρf + ρc

ρfρc

(
ρfv

2
Af + ρcv2

Ac

)
.

�� ��4.21

In the absence of flow in the coronal medium, i.e., vc = 0, the critical flow velocity can
be expressed in terms of the internal Alfvén speed and the density contrast,

(vf)KH = vAf

√
2
(
ρf

ρc
+ 1
)
.

�� ��4.22

These expressions agree with those derived by Holzwarth et al. (2007) and Terradas et al.
(2010). For a typical density contrast of filaments, ρf/ρc = 200, one has (vf)KH ≈ 20vAf .
Since the observed flow velocities are less than 30 km s−1 in quiescent prominences,
which corresponds to sub-Alfvénic velocities, the KH critical velocity is much larger
than the observed values.
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Slow modes

To obtain an analytical expression of the slow mode frequency, let us consider its
approximation in the ideal, static case, namely ω2 ≈ c2sfk

2
z . Such as happens for all

the expressions described so far, we can simply perform the replacements ω → Ω0 and
cs → Λ0 to extend this approximation to the non-adiabatic case with flow, so

Ω2
0 ≈ Λ2

0k
2
z .

�� ��4.23

By considering first the ideal case with flow, i.e., Ω2
0 = c2sk

2
z , one obtains the expected

result for the frequency, namely

ω ≈ v0kz ± cskz,
�� ��4.24

where again the + and − signs correspond to forward and backward waves, respectively.
Provided that the main effect of the flow is to shift the real part of the frequency, let

us consider the non-adiabatic case without flow, i.e., ω2 ≈ Λ2
0k

2
z , to obtain an approxi-

mation for the imaginary part of the frequency. We write the frequency as ω = ωR + iωI

and neglect terms with ω2
I and ω3

I . Then, the following expression for ωI is obtained

ωI ≈ −
(γ − 1)

2γ

[
(γ − 1)

(
κ̃‖k

2
z + ωT

)
+ ωρ

c2sk
2
z + (γ − 1)2

(
κ̃‖k2

z + ωT

)2
]
c2sk

2
z .

�� ��4.25

Note that Equation (4.25) is valid for all values of kz since so far we have only assumed
ωI � ωR. Equation (4.25) is not only useful to calculate the damping time, but also
provides us with a criterion for the wave thermal instability by finding the combination
of parameters that causes ωI > 0, namely

(γ − 1)
(
κ‖k

2
z + ρ0LT

)
+
ρ2
0

T0
Lρ < 0,

�� ��4.26

where we have used Equation (4.7) to express κ̃‖, ωT, and ωρ in terms of the equilibrium
density and temperature. Equation (4.26) turns out to be the instability criterion for
near-isentropic acoustic oscillations obtained by Field (1965) in his Equation (25b).
When kza � 1, thermal conduction can be omitted and the instability criterion is
further simplified by taking the full expressions for LT and Lρ into account. Hence,
Equation (4.26) becomes

α <
−1
γ − 1

,
�� ��4.27

which gives α < −0.6 for γ = 5/3. According to Equation (4.27), none of the three
prominence radiative regimes of Table 2.1 is thermally unstable, but the PCTR (3)
and coronal regimes fulfill the instability condition, as was obtained by Carbonell et al.
(2004).

Let us consider now the different limits of kza and calculate the approximate ex-
pression of τD/P in each case in the presence of flow. For kza � 1 and according to
Equations (4.16) and (4.24), we can approximate the real part of the slow mode fre-
quency as ωR ≈ v0kz ±

√
α−1
αγ cskz. Then we compute the ratio ωI/ωR and neglect the

terms with k2
z . Hence, the expression for τD/P is

τD
P
≈ γ

π

[
(γ − 1)α2ωρ

(γ − 1)α+ 1

] ∣∣∣v0 ±√α−1
αγ cs

∣∣∣
c2s

k−1
z , if kza� 1,

�� ��4.28
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where we have used the relation ωT = αωρ. From Equation (4.28) we see that τD/P ∼
O
(
k−1

z

)
when kza � 1. Note that the term related to thermal conduction is absent in

Equation (4.28), which indicates that the slow mode damping in the TT limit is dom-
inated by radiative losses. In the opposite situation, i.e., for kza � 1, we approximate
the real part of the frequency as ωR ≈ v0kz ± 1√

γ cskz (Eqs. [4.17] and [4.24]), and the
dominant terms in the ratio ωI/ωR are those with k2

z . Therefore, τD/P is now

τD
P
≈ γ

π
κ̃‖

∣∣∣v0 ± 1√
γ cs

∣∣∣
c2s

kz, if kza� 1.
�� ��4.29

Thus, we see that τD/P ∼ O (kz) when kza� 1, and the damping is independent of the
radiation terms since the limit kza� 1 corresponds to the isothermal regime dominated
by thermal conduction. Finally, for intermediate kza, one has that ωR ≈ v0kz ± cskz,
but we have to use the complete expression of ωI given by Equation (4.25). Therefore,
we obtain

τD
P
≈ γ

π (γ − 1)

[
c2sk

2
z + (γ − 1)2

(
κ̃‖k

2
z + ωT

)2
(γ − 1)

(
κ̃‖k2

z + ωT

)
+ ωρ

]
|v0 ± cs|
c2skz

, if kza ∼ 1.
�� ��4.30

We see that the expression of τD/P for intermediate kza does not have a simple depen-
dence with kz.

Thermal mode

Now we turn our attention to the thermal or condensation mode. The thermal mode
is a very peculiar solution that only appears in the presence of non-adiabatic effects.
In the absence of flows, its frequency is purely imaginary, so the thermal mode is a
non-propagating, purely damped disturbance. The temperature perturbations are more
important for the thermal mode than for the magnetoacoustic modes. Because of its
unstable character in some coronal conditions, the thermal mode has been investigated
as a possible mechanism for the formation of prominences and their fine structures (e.g.,
van der Linden 1993; Ireland et al. 1998). The general properties of the thermal mode
have been studied in uniform, unbounded plasmas (e.g., Field 1965), in coronal slabs
(e.g., van der Linden & Goossens 1991), and in coronal cylinders (e.g., An 1984).

Following a similar argument as in van der Linden & Goossens (1991), we check that
the evanescent assumption in the corona (m2

c < 0) along with the body-wave assumption
within the thread (m2

f > 0) can be both satisfied by the thermal mode. Let us express
the thermal mode frequency as ω = is, where s is real and here called the damping rate.
The situation s < 0 corresponds to a damped thermal mode, whereas s > 0 occurs if
the mode is thermally unstable. From Equation (4.10) one obtains

m2
0 = −

(
s2 + k2

zv
2
A

) (
s2 + k2

zΛ
2
0

)(
v2
A + Λ2

0

) (
s2 + k2

z c̃
2
T

) = −
(
s2 + k2

zv
2
A

) A
B
.

�� ��4.31

The quantities A and B are the following third-order polynomials in s,

A = s3 +N2s
2 + k2

zc
2
ss+ k2

zc
2
sN2,

�� ��4.32

B = s3 +N3s
2 + k2

zc
2
Ts+ k2

zc
2
TN1,

�� ��4.33
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Figure 4.2: Normalized solutions of A = 0 (Eq. [4.32]) and B = 0 (Eq. [4.33]) for
prominence (solid lines) and coronal (dashed lines) conditions. The shaded zone, i.e., the
overlap of the regions where m2

f > 0 (between solid lines) and m2
c > 0 (between dashed

lines), points the region where the thermal mode does not exist as an evanescent-like
solution.

with

N1 =
(γ − 1)
γ

(
κ̃‖k

2
z + ωT − ωρ

)
,

�� ��4.34

N2 = (γ − 1)
(
κ̃‖k

2
z + ωT

)
,

�� ��4.35

N3 =
N2v

2
A +N1c

2
s

v2
A + c2s

.
�� ��4.36

The condition m2
f > 0 implies that sign (Af) 6= sign (Bf). The solutions of A = 0 are a

pair of complex conjugate roots and a real root, while the same stands for the roots of
B = 0. Then, the condition m2

f > 0 is only verified in the region between the real roots of
Af = 0 and Bf = 0, namely sAf

and sBf
, respectively, which are very close to each other.

On the other hand, the external evanescent requirement (m2
c < 0) is verified outside the

region between the real solutions of Ac = 0 and Bc = 0, namely sAc and sBc respectively.
In a weak damping situation, one can neglect the terms with s2 and s3, so the real roots
of A = 0 and B = 0 are sA ≈ −N2 and sB ≈ −N1, respectively. By computing these
real roots considering prominence and coronal conditions (Fig. 4.2), one obtains that
these regions do not overlap except for 5.04× 10−3 . kza . 5.10× 10−3, where m2

f > 0
but also m2

c > 0, so the evanescent assumption is not verified. Then, the thermal mode
cannot exist as a non-leaky solution in such a forbidden region. However, outside this
extremely narrow overlapping region, the fundamental thermal mode and all its radial
harmonics exist with an almost identical damping rate in the range sBf

< s < sAf
, whose

value is also almost independent of the azimuthal wavenumber, m.
To obtain a simple expression of the thermal mode damping rate, let us approximate

s ≈ sB. This approximation is similar to the approximation ω ≈ cskz considered in the
case of the slow mode. Then, we take B = 0 and neglect the terms with s2 and s3 in
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Equation (4.33), obtaining

s ≈ −(γ − 1)
γ

(
κ̃‖k

2
z + ωT − ωρ

)
.

�� ��4.37

Equation (4.37) is equivalent to the approximated expression for the thermal mode
frequency provided by Carbonell et al. (2009). Expressing ωT and ωρ in terms of LT

and Lρ, the following criterion should be satisfied to have a damped, stable solution

κ‖k
2
z + ρ0

(
LT −

ρ0

T0
Lρ

)
> 0.

�� ��4.38

Equation (4.38) is the same stability criterion provided by Field (1965) in his Equa-
tion (25a). Since for prominence conditions this inequality is verified for all real values
of kz, the thermal mode is always a damped solution in our case.

By defining the thermal mode damping time as τD = 1/|s|, one obtains from Equa-
tion (4.37) that

τD ≈
γ

(γ − 1)
(
κ̃‖k

2
z + ωT − ωρ

)−1
.

�� ��4.39

The long and short wavelength limits of Equation (4.39) are, respectively,

τD ≈ γ
(γ−1)(α−1)ωρ

if kza� 1,
�� ��4.40

τD ≈ γ
(γ−1)κ̃‖k2

z
if kza� 1,

�� ��4.41

thus the damping time is constant for kza� 1 and is O
(
k−2

z

)
for kza� 1.

In the presence of flow, the thermal mode frequency has a real part given by the
Doppler shift as ω = v0kz + is. In such a case, the ratio of the damping time to the
period is

τD
P
≈ 1

2π
γ

(γ − 1)
|v0kz|(

κ̃‖k2
z + ωT − ωρ

) . �� ��4.42

4.2 Results in the absence of flow

We first study the case without flows, i.e., vf = vc = 0. The physical parameters
used in the following computations are the same considered in Chapter 3: T̃f = 104 K,
ρf = 5× 10−11 kg m−3, T̃c = 2 × 106 K, ρc = 2.5 × 10−13 kg m−3, B0 = 5 G, and
a = 100 km. Unless otherwise stated, we assume the Prominence (1) and Corona
regimes of Table 2.1 to represent the prominence and coronal plasma radiative losses,
respectively.

4.2.1 Dispersion diagrams

Here, we compute the phase velocity diagrams of transverse and slow modes, and
compare them to the corresponding diagrams in the adiabatic case. We restrict ourselves
to the fundamental branches of modes with m = 0, 1, and 2.

We first consider transverse modes. Figure 4.3a displays the phase velocity, ωR/kz,
as a function of kza. Note that Figure 4.3 is a projection of the phase velocity on
the real plane, since ω is now a complex quantity. Figure 4.3a can be compared with
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Figure 3.2, corresponding to the ideal, adiabatic case, and we see that the phase velocity
of transverse modes is barely affected by the presence of non-adiabatic mechanisms.
Hence, the period of these solutions is approximately the same as in the ideal case. The
main novelty with respect to the ideal case is that the ideal forbidden band inhabited by
leaky coronal slow modes, i.e., cTc < ω/kz < csc, is replaced by the complex region c̃Tc <
ω/kz < Λc, whose projection on the plane of Figure 4.3a is indicated by dotted lines.
Now, the sausage mode frequency does not cross the forbidden region in the complex
space, and so there is no frequency cut-off when the sausage mode phase velocity reaches
the projection of the forbidden region on the real plane, < (c̃Tc) < ωR/kz < < (Λc).

Figure 4.3: Normalized phase velocity, ωR/kzcsf , as a function of kza corresponding to
non-adiabatic normal modes with m = 0, 1, and 2. (a) Result for transverse modes.
Note that the interval < (c̃Tc) < ωR/kz < < (Λc) is a projection on the plane of the
figure of the complex forbidden region c̃Tc < ω/kz < Λc. (b) Result for slow modes. The
dotted lines denote the interval < (c̃Tf) < ωR/kz < < (Λf), which is a projection on the
plane of the figure of the complex region c̃Tf < ω/kz < Λf . In both panels, the shaded
zone corresponds to the relevant range of kza of prominence oscillations. Note that the
horizontal axes are in logarithmic scale.

Contrary to transverse modes, the phase velocity diagram of slow modes shows
significant differences with respect to the adiabatic case (compare Figs. 3.4 and 4.3b).
First, the adiabatic phase velocity band cTf < ω/kz < csf is replaced by its non-adiabatic,
complex counterpart c̃Tf < ω/kz < Λf . Figure 4.3b displays a projection of this complex
band on the real plane. The range of phase velocities of slow modes is even narrower
than in the ideal case. Since both < (c̃Tf) and < (Λf) depend on kza, the range of
allowed phase velocities is not constant with kza. For example, in the relevant range of
kza, the allowed phase velocities are smaller than for larger kza. This causes the slow
mode period in the non-adiabatic case to be larger than in the ideal case. Despite these
differences with the adiabatic case, we see that the non-adiabatic slow modes are also
very insensitive to the value of m.

4.2.2 Damping times

Now, we study the efficiency of the different non-adiabatic mechanisms for the damp-
ing of the eigenmodes. Here, the relevant quantity is the ratio of the damping time to
the period, τD/P . Values of τD/P < 10 are realistic, whereas larger values indicate that
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Figure 4.4: (a) Ratio of the damping time to the period, τD/P , as a function of kza
corresponding to the non-adiabatic sausage (m = 0), kink (m = 1), and first fluting
(m = 2) modes. Note the sausage mode frequency cut-off. (b) τD/P versus kza of
the kink mode (solid line). The different discontinuous lines correspond to the solution
when a specific non-adiabatic mechanism, indicated by means of labels, is removed
from the energy equation. The vertical dotted lines are the approximated transitional
wavenumber between the ranges of dominance of the different mechanisms given by
Equations (4.43) and (4.44).
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the considered mechanisms are not efficient enough to provide damping times consistent
with those observed.

Transverse modes

Figure 4.4a shows τD/P versus kza for the sausage, kink, and first fluting transverse
modes. In all the cases, we see that τD/P � 10. In particular, the values of τD/P
of the kink mode within the observationally relevant range of kza go from 104 to 108,
approximately, meaning that non-adiabatic effects cannot explain the observed damping
of transverse thread oscillations. The sausage mode shows a peculiar behavior for kza ≈
2, where τD/P reaches a pronounced minimum. This minimum is caused by the coupling
to leaky coronal slow modes when the sausage mode phase velocity is in the range
< (c̃Tc) < ωR/kz < < (Λc).

Figure 4.4b allows us to shed light on the kink mode behavior. In order to know which
is the most dominant damping mechanism, we compare the damping time obtained when
considering all non-adiabatic terms with the results obtained when a specific mechanism
is removed from the energy equation. With this analysis, we are able to know where
the omitted mechanism has an appreciable effect on the damping. Coronal thermal
conduction turns out to be the dominant mechanism in the relevant range of kza, while
prominence radiation losses and prominence thermal conduction only become important
for larger kza. On the contrary, coronal radiation losses are negligible but for kza smaller
than the realistic values.

Approximate values of kz for which the transitions between the different regimes
governed by the damping mechanisms take place can be computed by considering the
thermal ratio, d, and the radiation ratio, r, given by Equations (4.1) and (4.2), respec-
tively, and following a similar process to that of Carbonell et al. (2006) and Soler et
al. (2007b). We relate the typical length-scale, λ0, that appears in the expressions of d
and r with the longitudinal wavenumber, λ0 ∼ k−1

z . Then, the condition d = r gives
us the transitional wavenumber, k∗, between the radiation-dominated regime and the
conduction-dominated regime, namely

k∗ ≈ ρ0

√
χ∗Tα−1

0

κ‖
,

�� ��4.43

which has to be evaluated for both prominence and coronal conditions to know the ap-
proximated values of kz for the prominence radiation-prominence conduction transition,
k∗f , and the coronal radiation-coronal conduction transition, k∗c , respectively. On the
other hand, the approximate wavenumber for the transition from coronal conduction to
prominence radiation, k∗f−c, can be estimated by imposing dc = rf , where the subscripts
indicate what physical conditions must be considered, thus

k∗f−c ≈ ρf

√
ρfχ

∗
f T

αf
f

ρcκ‖cTc
.

�� ��4.44

These approximate transitional wavenumbers are shown by means of vertical lines in
Figure 4.4b. We see a good agreement of k∗f−c and k∗c with the actual transitional
wavenumbers. However, the actual value of k∗f is larger than the approximation, al-
though the order of magnitude of the approximation is the correct one.
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Figure 4.5: Ratio of the damping time to the period, τD/P , as a function of kza
corresponding to the non-adiabatic slow mode with m = 1. (a) Results for the differ-
ent prominence radiative regimes (labeled within the Figure) and for the case without
prominence thermal conduction. The result in the absence of thermal conduction is
computed for the Prominence (1) regime. The vertical dotted lines are the approximate
transitional wavenumbers between the radiative regime and the conductive regime, k∗f
given by Equation (4.43), and the critical wavenumber of the isothermal regime, kisoth

f

given by Equation (4.45). (b) The numerical solution for the Prominence (1) regime
(solid line) is compared with several analytical approximations (Eqs. [4.28]–[4.30]).
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Slow modes

Turning now to slow modes, we plot in Figure 4.5a τD/P versus kza corresponding
to the slow mode with m = 1. Since the other slow waves with a different m show the
same properties, we restrict ourselves to this solution for the sake of simplicity. The
slow mode is much more efficiently attenuated than the kink mode and its damping is
entirely governed by prominence mechanisms. Neither coronal conduction nor coronal
radiation are important for the slow mode damping. This result can be understood on
the basis of the slow mode perturbations. As shown in Chapter 3, the dominant slow
mode velocity perturbation is vz, which is essentially confined within the thread, so slow
modes are almost unaffected by the coronal physical properties. In the realistic range of
kza, radiation losses from the prominence plasma is the dominant damping mechanism.
The value of τD/P depends on the radiative regime considered, but for the three promi-
nence radiative regimes of Table 2.1 it is possible to obtain τD/P < 10 for relevant kza.
Therefore, radiation losses offer a consistent explanation for the slow mode damping. On
the other hand, the slow mode damping for large kza is dominated by prominence ther-
mal conduction. Again, the prominence radiation-prominence conduction transitional
wavenumber is well-approximated by Equation (4.43). For a large enough kza, thermal
conduction becomes so efficient that the isothermal regime is reached. Porter et al.
(1994) provide an approximate expression for the critical wavenumber of the isothermal
regime, kisoth, which in our notation is

kisoth ≈ 2
κ̃‖
c̄,

�� ��4.45

with c̄ = cs for slow modes, and c̄ = vA for fast modes. An excellent agreement between
the actual critical wavenumber of the isothermal regime and the approximation is seen
in Figure 4.5a.

Next, we compare in Figure 4.5b the numerical solution of the full dispersion relation
with the approximations derived in Section 4.1.4. The approximations for kza � 1
(Eq. [4.28]) and kza � 1 (Eq. [4.29]) are plotted by means of the symbols 4 and
♦, respectively, while the approximation for intermediate kza (Eq. [4.30]) is indicated
with the symbols ∗. All approximations are in an almost perfect agreement with the full
solution in their respective ranges. It is worth noting that the expression for intermediate
kza is also quite accurate both in the long and short wavelength limit.

Thermal mode

Finally, we study the thermal mode. Figure 4.6 displays the damping time, τD, of the
thermal mode as a function of kza. As for the slow mode, the azimuthal wavenumberm is
almost irrelevant for the thermal mode behavior, so we only present the results form = 1.
One can see that this mode is very quickly attenuated and that radiative losses from the
prominence plasma are responsible for the damping in the realistic range of kza, whereas
prominence thermal conduction is only relevant for large kza. As the prominence plasma
optical thickness is increased by considering Prominence (2) and Prominence (3) regimes,
the damping time grows in the relevant range of wavenumbers. Again, the similarity with
slow modes is clear since coronal mechanisms have a negligible effect, the thermal mode
damping being exclusively dominated by prominence mechanisms. The approximation
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Figure 4.6: Damping time, τD, of the thermal mode with m = 1 as a function of kza.
The different lines correspond to the results for the three prominence radiative regimes
(labeled within the Figure) and the case without prominence thermal conduction. The
symbols ♦ correspond to the analytical approximation given by Equation (4.39). The
result in the absence of thermal conduction and the analytical approximation are both
computed for the Prominence (1) regime. The vertical dotted line is the approximated
transitional wavenumber between the radiative regime and the conductive regime, k∗f ,
given by Equation (4.43). The discontinuous line within the shaded zone denotes the
leaky region of thermal modes.

given by Equation (4.39) is in reasonable agreement with the full numerical solution for
small kza (see symbols in Fig 4.6), while the agreement is almost perfect for large kza.

4.3 Effect of mass flow

Hereafter, we include a longitudinal steady mass flow in the model in order to assess
its influence on the previously described oscillatory modes. We assume no flow in the
external medium, i.e., vc = 0. Moreover, the internal flow is taken towards the positive
z-direction, i.e., vf > 0. Note that all other possible configurations can be obtained by
means of a suitable election of the reference frame.

The reader is referred to Terra-Homem et al. (2003) for a detailed description of the
modification of the phase velocity diagram due to the presence of flow. In short, the
symmetry between forward (ωR > 0) and backward (ωR < 0) waves is broken by the
flow. The phase velocity, ωR/kz, of slow modes is between ±< (c̃Tf)+vf and ±< (Λf)+vf ,
where the + and − signs stand for forward and backward waves, respectively. For a
flow velocity larger than the real part of the filament non-adiabatic sound speed, the
phase speed of backward slow waves is dragged to positive values, and so they become
forward waves in practice (see Carbonell et al. 2009). We call these solutions reversed
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waves. Note that the observed flow velocities range from 5 km s−1 to 25 km s−1 (Zirker
et al. 1998; Lin et al. 2003, 2005), while the filament adiabatic sound speed of our
model is ≈ 12 km s−1, meaning that supersonic flows are realistic in the context of
prominences. On the other hand, the phase velocity of transverse waves is in the ranges
from ±vAf +vf to ±vAc, where again the + and − signs stand for forward and backward
waves, respectively.

Regarding thermal modes, the real part of their frequency now acquires a positive
value, and their phase velocity is equal to the flow velocity. Thus, thermal modes be-
have as propagating forward waves with respect to the static, external reference frame.
Although this result could be relevant from the observational point of view, since ther-
mal modes might be detected as propagating waves in flowing filament threads (see a
comment on this issue in Carbonell et al. 2009), their quick attenuation makes them
very difficult to detect in practice.

We focus next on the effect of the flow on the ratio τD/P . To perform this investi-
gation, we fix the longitudinal wavenumber to kza = 10−2 and vary the flow velocity in
the range 0 < vf/csf < 3, which approximately coincides with the observed velocities.
The radiative regime of the prominence plasma is Prominence (1) in all computations.
Figure 4.7 displays τD/P versus the flow velocity for the kink mode and the slow mode
(with m = 1). We have checked that, as predicted by Equation (4.25), the slow mode
damping time does not depend on the flow velocity, so the variation of τD/P is ex-
clusively due to the variation of the period. We obtain that the slow backward mode
is more attenuated than the forward wave. The value of τD/P for the slow backward
wave reduces dramatically as the flow velocity approaches the real part of the filament
non-adiabatic sound speed. For such a flow velocities, the slow backward wave period
tends to infinity since the real part of the frequency goes to zero and changes sign when
the direction of propagation is reversed.

On the other hand, the dependence of the kink mode τD/P on the flow velocity is the
opposite to that of the slow mode, i.e, the kink forward mode is more efficiently damped
than its corresponding backward solution. In addition, the variation of τD/P is mainly
due to the variation of the damping time, since the kink mode period is not significantly
changed for the considered flow velocities. The damping time of the kink forward wave
is more affected by the presence of flow than that of the backward wave. Figure 4.8
helps us understand the behavior of the kink forward mode damping time. We see that
when the kink forward wave phase velocity is in the range < (c̃Tc) < ωR/kz < < (Λc),
that corresponds to the region inhabited by leaky coronal slow modes, the ratio τD/P
has a minimum. This minimum is caused by the coupling of the kink forward wave to
the mentioned leaky coronal slow modes. This coupling phenomenon is also responsible
for the minimum of the sausage mode τD/P observed in Figure 4.4a. Although the
coupling with coronal modes reduces the value of τD/P by an order of magnitude for
vf/csf ≈ 3 with respect to the case without flow, this effect is not important enough to
obtain realistic values of the kink mode damping time.

Finally, Figure 4.9 shows the thermal mode τD/P with kza = 10−1, 10−2, and 10−3,
and the analytical approximation (Eq. [4.42]) for kza = 10−2. In practice, the values of
τD/P are so small that the amplitude of the oscillation drops to zero much before a single
period is completed, which makes the thermal mode extremely difficult to detect and so
not very relevant from an observational point of view. We see that the approximation
gives a slightly larger τD/P than the numerically value.
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Figure 4.7: Ratio of the damping time to the period, τD/P , as a function of vf/csf for
kza = 10−2 corresponding to (a) kink modes and (b) slow modes. The meaning of the
different line styles is indicated inside the panels. The analytical approximation for the
slow modes corresponds to Equation (4.28).
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Figure 4.8: (a) Normalized phase velocity and (b) corresponding values of τD/P of
the forward kink mode as a function of vf/csf for kza = 10−1, 10−2, and 10−3. The
shaded regions denote the range of phase velocities of the leaky coronal slow modes.
The symbols are the approximate value of the phase velocity (Eq. [4.20]).
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Figure 4.9: τD/P of the thermal mode as a function of vf/csf for kza = 10−1, 10−2,
and 10−3. Symbols are the approximated value of τD/P for kza = 10−2 obtained from
Equation (4.42).

4.4 Conclusion

In agreement with previous studies in simpler configurations (Carbonell et al. 2006,
2009; Terradas et al. 2005; Soler et al. 2007b, 2009a), non-adiabatic mechanisms only
produce damping times compatible with the observations in the case of slow modes.
The main effect of the flow on these solutions is that only parallel propagation to the
flow is allowed for strong enough flows. On the other hand, the damping of thermal
modes is extremely efficient but, for this very reason, these waves would be impossible
to observe in prominences. On the contrary, the kink mode damping in the absence of
flow is negligible. When flow is present, the kink mode damping is slightly improved in
the case of forward waves, the ratio τD/P being diminished by an order of magnitude
for realistic flow velocities. However, the kink mode damping time is still several orders
of magnitude larger than the reported values and even much larger than the lifetimes
of filament threads, which means that neither non-adiabatic mechanisms nor mass flows
provide with reasonable kink mode damping times applicable to prominences. For this
reason, it is likely that other damping mechanisms, different from thermal effects, are
responsible for the observed efficient attenuation of transverse thread motions.
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5
Magnetohydrodynamic Waves in a Partially

Ionized Filament Thread∗

In previous Chapters, we have neglected the presence of neutrals and have assumed
a fully ionized prominence plasma. The main motivation for the present Chapter is
to assess the effect of neutrals, and in particular that of ion-neutral collisions, on the
propagation and damping of MHD waves in filament threads.

Here, we consider the generalized induction equation (Eq. [2.84]), which contains
diffusion terms accounting for the effect of the collisions between the different plasma
species. We numerically solve the full MHD equations and obtain the period and damp-
ing time of Alfvén, slow, and fast MHD modes (Sec. 5.1.2). When possible, we find
analytical approximations of the ratio of the damping time to the period (Sec. 5.2),
and compare them to the numerical results (Sec. 5.3). In addition, we obtain analytical
expressions for the critical wavenumbers that constrain wave propagation along the fil-
ament thread. Finally, we assess the efficiency of the non-ideal terms in the induction
equation for the damping of oscillations.

5.1 Model and method

5.1.1 Equilibrium configuration

Again, our filament thread model is composed of a homogeneous and infinite mag-
netic flux tube of radius a with prominence conditions (density ρf = 5× 10−11 kg m−3

and temperature Tf = 8000 K) surrounded by an unbounded and homogeneous coronal
medium (density ρc = ρf/200 = 2.5 × 10−13 kg m−3 and temperature Tc). The thread
radius is a = 100 km. The magnetic field is uniform and orientated along the cylinder
axis, ~B0 = B0êz, with B0 = 5 G. The mean atomic weight, µ̃, indicates the plasma
ionization degree (µ̃ = 0.5 for a fully ionized plasma and µ̃ = 1 for a neutral gas). The
coronal medium is assumed to be fully ionized, so µ̃c = 0.5, while the filament ionization
degree, µ̃f , is considered a free parameter. Since the magnetic field is homogeneous, the
continuity of gas pressure across the cylinder boundary selects the coronal temperature.
Thus,

Tc =
ρf

ρc

µ̃c

µ̃f
Tf .

�� ��5.1

∗This Chapter is based on the results of R. Soler, R. Oliver, & J. L. Ballester 2009, Magnetohydro-
dynamic Waves in a Partially Ionized Filament Thread, ApJ, 699, 1553.
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According to the above expression, the coronal temperature varies between Tc = 8 ×
105 K for µ̃f = 0.5 and Tc = 1.6× 106 K for µ̃f = 1.

There is an extensive literature regarding wave propagation in a partially ionized
multi-fluid plasma in the context of laboratory plasma physics (e.g., Watanabe 1961a,b;
Tanenbaum 1961; Tanenbaum & Mintzer 1962; Woods 1962; Kulsrud & Pearce 1969;
Watts & Hanna 2004). In astrophysical plasmas, the typical frequency of MHD waves
is much smaller than the collisional frequencies between species. In such a case the
one-fluid approach is usually adopted. One can find examples of works studying MHD
waves in an unbounded, partially ionized, one-fluid plasma applied, e.g., to molecular
clouds (e.g., Balsara 1996), to protoplanetary disks (e.g., Desch 2004), and to wave
damping in the solar atmosphere (e.g., De Pontieu et al. 2001; Khodachenko et al.
2004; Leake et al. 2005). In the context of solar prominences, works by Forteza et al.
(2007, 2008) and Carbonell et al. (2010) are relevant. Forteza et al. (2007) followed the
treatment by Braginskii (1965) and derived the full set of MHD equations for a partially
ionized, one-fluid plasma. As showed in Chapter 2, a generalized Ohm’s Law has to
be considered in a partially ionized plasma, which includes the effect of the collisions
between different species. As a result, some additional terms appear in the magnetic
induction equation in comparison to the fully ionized case. Forteza et al. (2007) applied
the equations to study the time damping of linear, adiabatic waves in an unlimited
prominence medium. In subsequent works, this investigation was extended to the non-
adiabatic case by including thermal conduction by neutrals and electrons and radiative
losses (Forteza et al. 2008), and by studying the spatial damping (Carbonell et al. 2010).
Here, we use the formalism of Forteza et al. (2007) and investigate the propagation of
MHD waves in a partially ionized, cylindrical filament thread. Since we focus on the
effect of the diffusive terms of the magnetic induction equation, we consider the adiabatic
energy equation, so wave damping will be exclusively due to partial ionization effects.
There is a previous investigation of waves affected by ion-neutral collisions in a solar
magnetic structure by Kumar & Roberts (2003), but these authors considered the slab
geometry and focused on surface waves in photospheric-like conditions. Hence, to our
knowledge the present work is the first attempt to study MHD wave propagation in a
partially ionized cylindrical flux tube.

5.1.2 Basic equations and numerical procedure

Our basic equations for the discussion of linear, adiabatic MHD waves in a partially
ionized cylinder correspond to Equations (2.92)–(2.96), where the induction equation
(Eq. [2.94]) is now replaced by the linearized version of the generalized induction equa-
tion (Eq. [2.84]), namely

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
−∇×

(
η∇× ~B1

)
−∇×

[
ηH

(
∇× ~B1

)
× ~B0

]
+ ∇×

{
ηC − η
B2

0

[(
∇× ~B1

)
× ~B0

]
× ~B0

}
−∇×

[
Ξ∇p1 × ~B0

]
,

�� ��5.2

with Ξ = Ξ̃ξiξn and the rest of symbols have the same meaning as in previous Chapters.
Note that since the filament thread and the coronal plasma are both assumed homo-
geneous, the coefficients of the diffusive terms in Equation (5.2) are constants and not
affected by the spatial derivatives.
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Next, perturbations are written proportional to exp (imϕ+ ikzz − iωt), and the ba-
sic equations become

iωρ1 = ρ0

(
v′r +

vr

r
+
im

r
vϕ + ikzvz

)
,

�� ��5.3

iωvr =
1
ρ0
p′1 −

v2
A

B0

(
ikzBr −B′

z

)
,

�� ��5.4

iωvϕ =
im

r

1
ρ0
p1 −

v2
A

B0

(
ikzBϕ −

im

r
Bz

)
,

�� ��5.5

iωvz =
ikz

ρ0
p1,

�� ��5.6

iωBr = −ikzB0vr + η

(
m2

r2
Br +

im

r
B′

ϕ +
im

r2
Bϕ

)
+ ηHB0

(
k2

zBϕ − kz
m

r
Bz

)
+ ηC

(
k2

zBr + ikzB
′
z

)
+ ikzΞB0p

′
1,

�� ��5.7

iωBϕ = −ikzB0vϕ − η
(
B′′

ϕ +
1
r
B′

ϕ −
1
r2
Bϕ −

im

r
B′

r +
im

r2
Br

)
− ηHB0

(
k2

zBr + ikzB
′
z

)
− ηC

(
kz
m

r
Bz − k2

zBϕ

)
− kzΞB0

m

r
p1,

�� ��5.8

iωBz = B0

(
v′r +

1
r
vr +

im

r
vϕ

)
+ ηHB0

(
ikzB

′
ϕ + ikz

1
r
Bϕ − ikz

m

r
Br

)
− ηC

(
B′′

z +
1
r
B′

z −
m2

r2
Bz − ikzB

′
r −

ikz

r
Br + kz

m

r
Bϕ

)
− ΞB0

(
p′′1 +

1
r
p′1 −

m2

r2
p1

)
,

�� ��5.9

iω
(
p1 − c2sρ1

)
= 0,

�� ��5.10

where the prime denotes derivative with respect to r.
Equations (5.4)–(5.10) form an eigenvalue problem. The eigenvalue is ω and the

eigenvector is (ρ1, vr, vϕ, vz, Br, Bϕ, Bz, p1). We numerically solve Equations (5.4)–(5.10)
by means of the PDE2D code (Sewell 2005) based on finite elements (see, e.g., Terradas
et al. 2005, for an explanation of the method). Since the eigenvalue ω is in general a
complex quantity, Equations (5.4)–(5.10) are separated into their real and imaginary
parts. Cubic Hermite elements are used, which in the present case provide an appro-
priate description of wave modes. The numerical integration of Equations (5.4)–(5.10)
is performed from the cylinder axis, r = 0, to the finite edge of the numerical domain,
r = rmax. The evanescent condition is imposed in the coronal medium, so all pertur-
bations vanish at r = rmax. Therefore, the edge of the numerical domain is located far
enough from the filament thread to obtain a good convergence of the solution and to
avoid numerical errors (typically, we consider rmax = 100a). The boundary conditions
at r = 0 are imposed by symmetry arguments. The PDE2D program uses a collocation
method and the generalized matrix eigenvalue problem is solved using the shifted inverse
power method. We assume fixed, real, and positive kz and m, so the numerical solution
gives us the complex eigenvalue, ω = ωR + iωI, closest to the provided initial frequency
guess, as well as the corresponding eigenfunctions of perturbations. Wave solutions ap-
pear in pairs, corresponding to forward (ωR > 0) and backward (ωR < 0) waves. Since
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Figure 5.1: Dimensionless Ohm’s, η̃, Hall’s, η̃H, and Cowling’s, η̃C, magnetic diffusivities
of the filament plasma as a function of the filament ionization degree, µ̃f . For comparison
purposes, the respective values in the fully ionized coronal medium (µ̃c = 0.5) are:
η̃c = η̃Cc ≈ 1.4× 10−11 and η̃Hc ≈ 1.8× 10−4.

there are no flows in the equilibrium configuration, both directions of propagation are
equivalent and so we restrict ourselves to solutions with ωR > 0.

5.1.3 Dimensional analysis of the induction equation

Here, we quantify the importance of the diffusion terms of Equation (5.2) by means
of a dimensional analysis. It is convenient for our following analysis to write Ohm’s,
Cowling’s, and Hall’s diffusivities in a dimensionless form as

η̃ =
η

vAfa
, η̃C =

ηC

vAfa
, η̃H =

ηHB0

vAfa
,

�� ��5.11

where tildes denote dimensionless quantities. Figure 5.1 displays the filament plasma
dimensionless diffusivities as a function of the filament ionization degree.

First, we have to assess the typical length-scale of each dissipative term because
magnetic diffusion is not isotropic in a partially ionized plasma. An examination of
Equations (5.8), (5.9), and (5.10) reveals that longitudinal derivatives only appear in
the terms with ηC and ηH, while the terms with η only contain radial and azimuthal
derivatives. Therefore, the typical length-scale of both Cowling’s and Hall’s terms is
the longitudinal wavelength, λz, which can be expressed in terms of the longitudinal
wavenumber, λz = 2πk−1

z . On the other hand, the typical length-scale of the ohmic term
is the filament thread radius, a. By taking into account these relevant length-scales, and
since magnetic diffusion parallel to field lines is governed by Ohm’s diffusion, we define
the parallel magnetic Reynolds number, Rm‖, as the magnitude of the convective term
with respect to that of Ohm’s term, namely

Rm‖ ∼

∣∣∣∇× (~v1 × ~B0

)∣∣∣∣∣∣∇× (η∇× ~B1

)∣∣∣ ∼ vAfa

η
∼ 1
η̃
.

�� ��5.12
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On the other hand, magnetic diffusion perpendicular to field lines is dominated by Cowl-
ing’s diffusion. Therefore, we equivalently define the perpendicular magnetic Reynolds
number, Rm⊥, as the magnitude of the convective term with respect to that of Cowling’s
term, namely

Rm⊥ ∼

∣∣∣∇× (~v1 × ~B0

)∣∣∣∣∣∣∇× {ηC−η
B2

0

[(
∇× ~B1

)
× ~B0

]
× ~B0

}∣∣∣ ∼ vAfλ
2
z

ηCa
∼
(

2π
kza

)2 1
η̃C
.

�� ��5.13

Finally, the dimensionless number H gives us the magnitude of the convective term with
respect to that of Hall’s term, namely

H ∼

∣∣∣∇× (~v1 × ~B0

)∣∣∣∣∣∣∇× [ηH

(
∇× ~B1

)
× ~B0

]∣∣∣ ∼ vAfλ
2
z

ηHB0a
∼
(

2π
kza

)2 1
η̃H
.

�� ��5.14

We see that Rm‖ is independent of the longitudinal wavenumber, while Rm⊥ and
H are both inversely proportional to k2

z . This suggests that the relative importance of
Cowling’s and Hall’s diffusion increases with kz. To perform a simple calculation, we
take kza = 1, a = 100 km, µ̃f = 0.8, and compute η̃, η̃C, and η̃H using the filament
equilibrium properties. We obtain Rm‖ ≈ 4 × 106, Rm⊥ ≈ 3 × 103, and H ≈ 8 × 105.
For the considered parameters, Cowling’s diffusion is dominant, while Ohm’s and Hall’s
diffusion have minor roles. Taking a more appropriate value of kza = 10−2 into account,
one obtains Rm‖ ≈ 4× 106, Rm⊥ ≈ 3× 107, and H ≈ 8× 109. Thus, in the case of thin
tubes, Ohm’s diffusion seems more relevant than the other mechanisms.

It is possible to obtain an estimation of the longitudinal wavenumber for which both
Ohm’s and Cowling’s diffusion have the same importance by equaling the parallel and
perpendicular magnetic Reynolds numbers, i.e., Rm‖ ≈ Rm⊥. By this procedure we
obtain

(kza)C ≈ 2π

√
η̃

η̃C
,

�� ��5.15

which gives (kza)C ≈ 2.8 × 10−2 for the same parameters assumed before. These es-
timations are consistent with the results of Forteza et al. (2007), who obtained that
the term with Cowling’s diffusion was the dominant mechanism in their case since they
considered quite a large value for the wavenumber component parallel to magnetic field
lines, and therefore ohmic diffusion was not important in their computations. We have
to bear in mind that the relevant range of kza of prominence oscillations corresponds to
10−3 . kza . 10−1, so according to Equation (5.15), both ohmic and Cowling’s diffusion
could be important in such a range of kza.

Next, we compute the value of kza for which Hall’s and Ohm’s terms have the same
importance by setting Rm‖ ≈ H. We obtain

(kza)H ≈ 2π

√
η̃

η̃H
,

�� ��5.16

whose value is (kza)H ≈ 4.6 × 10−1, so we get (kza)C < (kza)H. One can see that this
last relation is always fulfilled by comparing Equations (5.15) and (5.16) and taking
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into account that η̃C > η̃H in our equilibrium configuration (see Fig. 5.1). Therefore,
Cowling’s diffusion becomes dominant over Ohm’s diffusion for smaller wavenumbers
than those needed for Hall’s term to become more relevant than Ohm’s diffusion. Next,
we have to know whether Cowling’s diffusion or Hall’s diffusion dominate for kza beyond
both transitional values. To do so, we consider the situation when both mechanisms
have the same importance, i.e., Rm⊥ ≈ H, which implies η̃C ≈ η̃H. However, we must
point out again that in our model η̃C > η̃H, so the last condition is never satisfied,
meaning that Cowling’s diffusion is always more important than Hall’s diffusion.

By means of this simple dimensional analysis, we conclude that Hall’s diffusion is
always the less relevant mechanism for all values of kza and has a minor effect on
wave modes. This result is in agreement with Pandey & Wardle (2008) and Krishan &
Varghese (2008), who showed that Hall’s term may be only important for frequencies
larger than ∼ 104 Hz, which are much larger than the observed frequencies of prominence
oscillations. For this reason and for the sake of simplicity, Hall’s diffusion is hereafter
neglected from the present investigation.

5.2 Analytical expressions

Apart from the full numerical solution of the basic equations (Eqs. [5.4]–[5.10]), we
also perform an analytical investigation, which will allow us understand better the nu-
merical results. Unlike the non-adiabatic case studied in Chapter 4, it is not possible to
obtain a simple dispersion relation describing all the eigenmodes when the generalized
induction equation for a partially ionized plasma is taken into account. Hence, simpli-
fications are required in order to proceed analytically. Next, we study separately the
Alfvén, kink, and slow modes.

5.2.1 Alfvén modes

We start our analytical investigation by studying Alfvén waves. Some works have in-
vestigated Alfvén wave propagation in partially ionized plasmas (e.g., Watanabe 1961b;
Tanenbaum & Mintzer 1962; Watts & Hanna 2004; Pandey & Wardle 2008; Forteza et
al. 2008), but to our knowledge a detailed investigation in cylindrical geometry applied
to solar plasmas remains to be done. In cylindrical geometry, Alfvén modes are coupled
to magnetoacoustic modes except for m = 0. Thus, we assume no azimuthal dependence
in order to study Alfvén waves separately from the other wave modes. We see that by
setting m = 0 and neglecting Hall’s term, Equations (5.6) and (5.9) are decoupled from
the rest and become

iωvϕ = −ikz
v2
A

B0
Bϕ,

�� ��5.17

iωBϕ = −ikzB0vϕ − η
(
B′′

ϕ +
1
r
B′

ϕ −
1
r2
Bϕ

)
+ ηCk

2
zBϕ.

�� ��5.18

These equations only involve the perturbations vϕ and Bϕ, so Alfvén modes are purely
torsional, incompressible waves for m = 0. Now, we use Equation (5.17) to express vϕ

as a function of Bϕ and, after substituting it in Equation (5.18), a single expression for
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Bϕ is obtained, namely

ηB′′
ϕ + η

1
r
B′

ϕ +
[
i

ω

(
ω2 − v2

Ak
2
z + iωηCk

2
z

)
− η 1

r2

]
Bϕ = 0.

�� ��5.19

For η 6= 0, Equation (5.19) can be rewritten as

B′′
ϕ +

1
r
B′

ϕ +
(
m2

A −
1
r2

)
Bϕ = 0,

�� ��5.20

with
m2

A =
i

ηω

(
ω2 − k2

zΓ
2
A

)
, Γ2

A = v2
A − iωηC.

�� ��5.21

It is straight-forward to check that the same equation applies for vϕ. Hence, the Alfvén
wave is governed by a Bessel equation of order 1, where mA plays the role of the radial
wavenumber and ΓA is equivalent to the modified (or resistive) Alfvén speed defined
in Equation (29) of Forteza et al. (2008). We then see that when magnetic diffusion is
present, Alfvén modes are not strictly confined to magnetic surfaces and become global
eigenmodes of the flux tube (see, e.g., Ferraro & Plumpton 1961; Sy 1984; Copil et al.
2008).

The general solution of Equation (5.20) for regular perturbations at r = 0 and
vanishing at infinity is

Bϕ(r) =

{
A1J1(mAfr), if r ≤ a,

A2H
(1)
1 (mAcr), if r > a,

�� ��5.22

A1 and A2 being complex constants. J1 and H
(1)
1 are the usual Bessel function and

Hankel function of the first kind, respectively, of order 1 (Abramowitz & Stegun 1972).
We have to note here that mAf and mAc are both complex quantities. Even with a
complex mAf , the function J1 remains as a correct description for the solutions within
the cylinder. For complex arguments, the Bessel function J1 can be expressed as a
combination of functions J and I (see, e.g Abramowitz & Stegun 1972; Yousif & Melka
1997), so the resistive Alfvén mode has a mixed body and surface character. For the
same reason, the solution in the coronal medium has mixed propagating and evanescent
properties. This fact leads us to use the more convenient representation of the external
solution in terms of a Hankel function instead of the modified Bessel function K with a
real argument usually considered for evanescent waves (see Cally 1986). The condition
for outgoing waves is fulfilled by selecting the appropriate branch of mAc such that
< (mAc/ω) > 0 (Stenuit et al. 1999).

In order to obtain the dispersion relation, we need to impose boundary conditions
at r = a. Woods (1962) and Tomimura (1990) provide appropriate boundary conditions
for our case, namely

[[Bϕ]] = 0,
[[
ηB′

ϕ

]]
= −Bϕ

r
[[η]] ,

�� ��5.23

where [[X]] = Xc − Xf stands for the jump of the quantity X at r = a. Bϕ is set
continuous across the boundary because we assume no surface currents on the interface
between the thread and the corona. On the contrary, the jump of the radial derivative of
Bϕ is determined by the difference between the internal and external ohmic diffusivities.
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Applying these boundary conditions and after some algebra, the following dispersion
relation is obtained,

ηcmAc
H ′

1
(1)(mAca)

H
(1)
1 (mAca)

− ηfmAf
J ′1(mAfa)
J1(mAfa)

=
ηf − ηc

a
.

�� ��5.24

Equation (5.24) is the general dispersion relation for Alfvén waves in a partially
ionized cylinder, where the effect of both Ohm’s and Cowling’s diffusion is included.
However, no straight-forward conclusions can be extracted from Equation (5.24) without
solving it numerically or applying some approximations. To perform a more in-depth
analytical study of Alfvén wave propagation, let us go step by step and let us consider
now the case in which Ohm’s diffusion can be neglected, i.e., kza� (kza)C. By taking
η = 0 in Equation (5.19) one obtains that Alfvén waves verify

i

ω

(
ω2 − v2

Ak
2
z + iωηCk

2
z

)
Bϕ = 0.

�� ��5.25

Now, Bϕ can be an arbitrary function because for η = 0 the different magnetic surfaces
are no longer coupled. The dispersion relation for Alfvén modes in the regime dominated
by Cowling’s diffusion is

ω2 + iηCk
2
zω − k2

zv
2
A = 0.

�� ��5.26

Equation (5.26) is formally identical to Equation (49) of Pandey & Wardle (2008). Its
exact solution gives us a complex frequency as

ω = ±kz

2

√
4v2

A − η2
Ck

2
z − i

k2
z

2
ηC.

�� ��5.27

Because of the presence of an imaginary part of the frequency, we obtain the well-known
result that the Alfvén wave is damped by Cowling’s diffusion, i.e., by ion-neutral colli-
sions, in a partially ionized plasma (see, e.g., Haerendel 1992; De Pontieu & Haerendel
1998; De Pontieu 1999; De Pontieu et al. 2001; Leake et al. 2005, for studies on the
damping of Alfvén waves in the solar chromosphere). Obviously, if ηC = 0 we recover
the ideal, undamped Alfvén mode, i.e., ω = ±kzvA. From Equation (5.27) we can also
see that the real part of the Alfvén frequency vanishes for a critical value of kz given by

kc
z =

2vA
ηC

.
�� ��5.28

This critical wavenumber is equivalent to that given by Equation (38) of Forteza et al.
(2008) for Alfvén waves in an unbounded medium considering parallel propagation to
magnetic field lines. For kz > kc

z the Alfvén wave becomes a non-propagating, purely
damped disturbance.

Now, our aim is to take the case η 6= 0 into account but performing some approxi-
mations to the general dispersion relation (Eq. [5.24]). To do so, we take into account
that ηf/ηc ≈ 3 × 103, thus we can neglect the coronal Ohm’s diffusion in front of the
filament Ohm’s diffusion1. In such a case, torsional motions of the flux tube do not

1In the following expressions, it is important not to mistake the Ohm’s diffusivity in the corona,
namely ηc, for the Cowling’s coefficient, namely ηC.
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Figure 5.2: Modulus in arbitrary units of the eigenfunction Bϕ as a function of r/a
corresponding to the radially fundamental Alfvén mode with m = 0, µ̃f = 0.8, and
kza = 10−2. The vertical dotted line corresponds to the filament thread edge. The
small panel shows a close-up of the eigenfunction close to the boundary between the
thread and the corona.

disturb the coronal plasma since different magnetic surfaces in the corona are not cou-
pled when ηc = 0. Therefore, and with no loss of generality, we set Bϕ = 0 at r = a,
meaning that we assume the Alfvén mode is strictly confined within the cylinder. To
make sure that this approximation is also appropriate when ηc 6= 0, we numerically solve
Equations (5.17) and (5.18) with the PDE2D code and compute the eigenfunction Bϕ

corresponding to the radially fundamental Alfvén mode (see Fig. 5.2). Although the
eigenfunction is not strictly confined within the cylinder, we note that the amplitude
of Bϕ for r > a is much smaller than that within the thread. On the basis of this
evidence, assuming Bϕ ≈ 0 at r = a seems a reasonable approximation. According to
Equation (5.22), we have J1(mAfa) ≈ 0, which implies that mAfa ≈ j1, with j1 ≈ 3.8317
the first zero of the Bessel function J1. Hence, by considering the expression for mAf

(Eq. [5.21]), the Alfvén mode frequency is

ω = ±1
2

√
4v2

Afk
2
z −

(
ηCfk2

z + ηf
j21
a2

)2

− i

2

(
ηCfk

2
z + ηf

j21
a2

)
.

�� ��5.29

The above expression is consistent with previous results since for ηf = 0 it reduces to
Equation (5.27). Note that Equation (5.29) is only valid for the radially fundamental
Alfvén mode. Equivalent expressions for the radial harmonics can be simply obtained
by replacing j1 with the corresponding zero of the function J1 that applies to each case,
e.g., the first radial harmonic is described by the second zero, the second radial harmonic
by the third zero, and so on.

As before, we can obtain an expression for the critical kz at which the real part of
the Alfvén frequency vanishes. Thus,

kc±
z =

vAf

ηCf
±

√
v2
Af − ηCfηfj

2
1/a

2

ηCf
.

�� ��5.30
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We see that two values of kc
z are now possible. The one given by the + sign, namely kc+

z ,
is a correction of the previously described critical wavenumber for ηf = 0 (Eq. [5.28]).
On the other hand, the one given by the − sign, namely kc−

z , is a new critical value
which arises because of the combination of two effects, i.e., the nonzero value of ηf and
the presence of the factor j21/a

2 given by the geometry. Since Forteza et al. (2008)
considered an infinite medium, this geometry-related critical wavenumber is absent in
their investigation. Taking into account that ηCfηj

2
1/a

2v2
A � 1, a first-order Taylor

expansion of Equation (5.30) gives

kc+
z ≈ vAf

ηCf

(
2− ηCfηfj

2
1/a

2

2v2
Af

)
≈ 2vAf

ηCf
, kc−

z ≈ ηfj
2
1/a

2

2vAf
,

�� ��5.31

whose dimensionless forms are

kc+
z a ≈ 2

η̃Cf
, kc−

z a ≈ η̃f

2
j21 .

�� ��5.32

One can see that kc−
z a does not depend on ηCf and so it is not affected by the plasma

ionization degree. Furthermore, since kc−
z a < kc+

z a, the Alfvén wave only exists as a
propagating mode for kc−

z a < kza < kc+
z a.

Equation (5.29) also allows us to obtain the ratio of the damping time to the period
as

τD
P

=

√
4v2

Afk
2
z −

(
ηCfk2

z + ηfj
2
1/a

2
)2

2π
(
ηCfk2

z + ηfj
2
1/a

2
) .

�� ��5.33

Let us evaluate τD/P in the different limits of kza but far from the critical values. For
kc−

z a� kza� (kza)C, we can neglect Cowling’s diffusion, thus

τD
P
≈ 1
π

vAf

ηfj
2
1/a

2
kz,

�� ��5.34

whereas for (kza)C � kza� kc+
z a, Ohm’s diffusion is irrelevant, therefore

τD
P
≈ 1
π

vAf

ηCf
k−1

z .
�� ��5.35

The transition between both behaviors is expected to take place for kza ≈ (kza)C.

5.2.2 Kink modes

Here, we turn our attention to the kink mode. It is not possible to give a simple
dispersion relation for this wave when both ohmic and ambipolar magnetic diffusion are
considered. Some analytical progress can be performed by adopting the β = 0 case and
neglecting ohmic diffusion, i.e., η = 0. In such a situation, the relevant equations are

ρ0
∂~v1
∂t

=
1
µ

(
∇× ~B1

)
× ~B0,

�� ��5.36

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
+∇×

{
ηC

B2
0

[(
∇× ~B1

)
× ~B0

]
× ~B0

}
.

�� ��5.37
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From Equation (5.36) and assuming a time dependence of the form exp (−iωt), i.e., only
valid for normal modes, one can write the magnetic force term in Equation (5.36) as(

∇× ~B1

)
× ~B0 = − iωB

2
0

v2
A

~v1,
�� ��5.38

which can be used to rewrite Equation (5.37) in compact form as

∂ ~B1

∂t
=

Γ2
A

v2
A

∇×
(
~v1 × ~B0

)
,

�� ��5.39

with Γ2
A the resistive Alfvén speed defined in Equation (5.21). Equation (5.39) is formally

identical to the ideal induction equation with the extra factor Γ2
A/v

2
A in the convective

term. Note that Γ2
A/v

2
A = 1 when ηC = 0. Now, it is straight-forward to find a dispersion

relation by following the same procedure as in the ideal case (see details in Chap. 3),
obtaining

nc

ρc

(
ω2 − k2

zΓ2
Ac

)K ′
m (nca)

Km (nca)
− mf

ρf

(
ω2 − k2

zΓ2
Af

) J ′m (mfa)
Jm (mfa)

= 0,
�� ��5.40

where the quantities mf and nc are given by

m2
f =

(
ω2 − k2

zΓ
2
Af

)
Γ2

Af

, n2
c =

(
k2

zΓ
2
Ac − ω2

)
Γ2

Ac

.
�� ��5.41

Note that Equation (5.40) applies to all values of m and not only to kink modes (m = 1).
In the case m 6= 0 and kza� 1, Equation (5.40) becomes

ρf

(
ω2 − k2

zΓ
2
Af

)
+ ρc

(
ω2 − k2

zΓ
2
Ac

)
= 0,

�� ��5.42

whose solution after neglecting terms with k4
z is

ω = ±

√(
ρfv

2
Af + ρcv2

Ac

)
(ρf + ρc)

kz − i
(ρfηCf + ρcηCc)

2 (ρf + ρc)
k2

z .
�� ��5.43

According to Equation (5.43) the kink mode τD/P due to Cowling’s diffusion in the thin
tube case is

τD
P

=
(ρf + ρc)

1/2 (ρfv
2
Af + ρcv

2
Ac

)1/2

π (ρfηCf + ρcηCc)
k−1

z .
�� ��5.44

However, one must bear in mind that for kza� (kza)C, Ohm’s diffusion is more relevant
than Cowling’s diffusion. For this reason the damping ratio given by Equation (5.44) is
probably much larger than that due to Ohm’s diffusion. We check this last statement
later with our numerical computations.

Next, we determine whether the kink mode has any critical wavenumber. To do so,
we consider the different limits of the real part of the kink mode frequency, ωR. For
parallel propagation to magnetic field lines, i.e., kza� 1, the kink mode behaves like an
internal Alfvén mode. Hence, the kink mode frequency tends to ωR ≈ ωAf , with ωAf the
internal Alfvén frequency given by the real part of Equation (5.29). Then, kc+

z a given by
Equation (5.28) is also a critical wavenumber of the kink mode. On the other hand, for
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kza� 1 the kink mode frequency tends to ωk, which for ρf � ρc can be approximated
by ωk ≈

√
2ωAf . Again, the kink mode behavior is determined by the internal Alfvén

frequency for kza � 1, and the kink mode has also a lower critical wavenumber kc−
z a.

Nevertheless, the expression for the Alfvén mode kc−
z a (Eq. [5.31]) is not appropriate for

the kink mode since j1 is not a valid approximation of the kink mode radial wavenumber
when kza� 1. A general expression, i.e., independent of the geometry, of kc−

z a is

kc−
z a ≈ η̃f

2
(k⊥a)

2 ,
�� ��5.45

where k⊥a is the (dimensionless) perpendicular wavenumber to the magnetic field lines
and depends on the model geometry. For our present cylindrical filament thread, this
geometry-related factor can be written as (k⊥a)

2 ≈ (kra)
2 + (kϕa)

2, where kra and kϕa
are the radial and azimuthal wavenumbers, respectively. We approximate (kra)

2 by its
expression in the β = 0, ideal case, namely

(kra)
2 ≈

ω2
Ra

2

v2
Af

− (kza)
2 .

�� ��5.46

For kza � 1 and ρf � ρc, ω2
R ≈ 2v2

Afk
2
z , so (kra)

2 ≈ (kza)
2. On the other hand, the

azimuthal wavenumber can be expressed as (kϕa)
2 ≈ m2. Since the critical wavenumber

kc−
z a occurs for kza� 1, the azimuthal wavenumber dominates over the radial one and

we get (k⊥a)
2 ≈ m2. The lower critical wavenumber is, therefore,

kc−
z a ≈ η̃f

2
m2,

�� ��5.47

with m = 1 in the kink mode case.

5.2.3 Slow modes

Such as for the Alfvén and kink waves, it is possible to perform some simple analytical
calculations in the case of the slow modes. Here, it is crucial to take into account the
common result regarding the ideal slow mode propagation in both the Cartesian slab
(e.g., Edwin & Roberts 1982) and the cylinder (e.g., Edwin & Roberts 1983, see also
Chap. 3). It is well-known that the slow mode in a β < 1, homogeneous medium is mainly
polarized along the magnetic field direction. So, if one considers a magnetic structure,
say, a slab or a cylinder, the slow mode is almost insensible to the perpendicular geometry
to magnetic field lines and is mostly governed by the physical conditions internal to the
structure. In such a case, the slow mode frequency is well approximated by solving the
dispersion relation corresponding to a homogeneous medium with the internal physical
conditions, and selecting an appropriate value for the perpendicular wavenumber to the
magnetic field, namely k⊥. This k⊥ contains the effect of the geometry of the magnetic
structure. To apply this technique, we consider the dispersion relation for a partially
ionized, homogeneous, and infinite plasma derived by Forteza et al. (2007) in their
Equation (24), which in our notation is

ω4 − i
(
k2

z + k2
⊥
)
ηCfω

3 −
(
c2sf + v2

Af

) (
k2

z + k2
⊥
)
ω2

+ic2sf
(
k2

z + k2
⊥
) [(

k2
z + k2

⊥
)
ηCf − k2

⊥Ξfρfv
2
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]
ω +

(
k2

z + k2
⊥
)
k2

zc
2
sfv

2
Af = 0.

�� ��5.48
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Equation (5.48) is a fourth-order polynomial that contains both fast and slow modes,
but we are here only interested in approximating the slow mode frequency. Since this
quantity is smaller than that of the fast mode for the same wavenumber, we could
reasonably assume that the higher order terms in ω are related to the fast mode, while
the lower order terms in ω are related to the slow mode. This assumption especially
applies to small values of the wavenumber, i.e., small frequencies. In such a situation,
one can neglect the terms with ω3 and ω4 in Equation (5.48) to roughly drop the fast
mode contribution. Also, we neglect the term with Ξf to simplify matters. So, the
dispersion relation becomes a second order polynomial for the frequency that can be
solved exactly, namely

ω ≈ ±

√
c2Tfk

2
z −

c4Tfη
2
Cf

4v4
Af

(
k2

z + k2
⊥
)2 − ic2TfηCf

2v2
Af

(
k2

z + k2
⊥
)
.
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We check the validity of this approximation by taking ηCf = 0, and we get ω ≈ ±cTfkz,
which is consistent with the slow mode frequency in the ideal case. A critical wavenum-
ber, kcs

z , can be derived by setting the real part of Equation (5.49) equal to zero, namely

kcs
z =

v2
Af

cTfηCf
±

√
v4
Af

c2Tfη
2
Cf

− k2
⊥.

�� ��5.50

In principle, we obtain two critical values from Equation (5.50). The one given by the
+ sign corresponds to a very large value of kz, and we must point out that it is not a
correct critical value. The reason for obtaining this spurious critical wavenumber is that
Equation (5.49) fails to correctly approximate the slow mode frequency when kz is large
(in comparison with k⊥), since the terms with ω3 and ω4 in Equation (5.48) are relevant
for the slow mode in such a case and cannot be neglected. Our subsequent numerical
results confirm that this critical wavenumber is not a valid solution. On the contrary,
the critical wavenumber given by the − sign is a correct solution. For k2

⊥c
2
Tfη

2
Cf/v

4
Af � 1

it can be approximated by
kcs

z ≈ cTfηCf

2v2
Af

k2
⊥,

�� ��5.51

or in a dimensionless form as

kcs
z a ≈

cTf η̃Cf

2vAf
(k⊥a)

2 .
�� ��5.52

Hence, the critical wavenumber is both determined by the geometry, through k⊥a, and
by the ionization degree, through η̃Cf . As a consequence, the slow mode has no critical
wavenumber in the unbounded medium, studied by Forteza et al. (2008). For kz � kcs

z ,
we can take the real part of the frequency as ωR ≈ ±cTfkz and use Equation (5.49) to
obtain the ratio τD/P as

τD
P
≈ 1
π

v2
Af

cTfηCf

kz(
k2

z + k2
⊥
) . �� ��5.53

We have to provide an appropriate value of k⊥ for the slow mode. Again, let us
consider two well-known results regarding the slow mode behavior in the ideal case.
First, the dominant velocity perturbation for the slow mode is along magnetic field
lines, i.e., vz, and second, the corona has a negligible effect and the slow mode is mainly
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governed by the internal medium. In the ideal case, the perturbation vz of the slow
mode with azimuthal wavenumber m is proportional to the Bessel function Jm. One
possibility is to assume that vz is also approximately described by the function Jm in
the partially ionized case. Similarly as done for Alfvén waves in Section 5.2.1, we could
take vz fully confined within the filament thread and impose vz = 0 at r = a. In such
a situation, we approximate (k⊥a)

2 ≈ j2m + m2, where the term jm is the first zero of
the Bessel function Jm and accounts for the radial contribution to the perpendicular
wavenumber. Thus, the slow mode critical wavenumber takes the following form

kcs
z a ≈

cTf η̃Cf

2vAf

(
j2m +m2

)
.

�� ��5.54

We can now examine Figure 3.5c (corresponding to the slow mode perturbations in the
ideal case) and see that actually vz is not strictly confined within the filament thread
and that vz 6= 0 at r = a, which could make jm slightly different from the actual radial
wavenumber, and Equation (5.54) less accurate for approximating the actual critical
value than the corresponding expressions for the kink and Alfvén critical wavenumbers.
This point is checked later by our numerical computations.

5.3 Numerical results

5.3.1 Alfvén modes

Again, we start with Alfvén modes. We solve Equation (5.24) and plot in Figure 5.3a
the Alfvén wave phase velocity as a function of kza for several ionization degrees. As
analytically predicted, the Alfvén mode only propagates between two critical wavenum-
bers, the first of them being independent of the ionization degree. At these critical
wavenumbers, the real part of the Alfvén frequency vanishes. Note that the critical
values are far from the range of kza relevant for prominence oscillations. We see that,
except near the critical wavenumbers, the Alfvén mode phase velocity is almost equal
to vAf . The approximate values of the critical wavenumbers (Eq. [5.31]) for the case
µ̃f = 0.8 are denoted by vertical lines in Figure 5.3a.

On the other hand, Figure 5.3b displays the ratio τD/P as a function of kza. τD/P
is independent of µ̃f for small kza, while it is significantly affected by the ionization
degree for large kza. The maximum of τD/P occurs within or close to the relevant range
of kza. Figure 5.4 allows a better understanding of the behavior of τD/P . Here, we
select µ̃f = 0.8 and display a comparison of the full value of τD/P with that obtained by
neglecting one of the two possible damping mechanisms, i.e., Ohm’s diffusion (by setting
η = 0) or ion-neutral collisions (by setting ηC = η). As expected, Cowling’s diffusion,
i.e., ion-neutral collisions, has an important effect on the damping time for large kza,
whereas Ohm’s diffusion dominates for small kza. As estimated by Equation (5.15),
the transition between both regimes takes place within the relevant range of kza. The
estimated transitional wavenumber (vertical line in Fig. 5.4) is close to the actual value.
Computations for different values of µ̃f show equivalent results.

Finally, the approximation given by Equation (5.29) is compared with the complete
numerical solution by means of symbols in both panels of Figure 5.3. Only the case
µ̃f = 0.8 is studied again for simplicity. We see that there is an excellent agreement
between the full solution and the approximation.
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Figure 5.3: (a) Normalized phase velocity of the Alfvén mode with m = 0 as a function
of kza for µ̃f = 0.5, 0.6, 0.8, and 0.95. The vertical dotted lines are the approximated
critical wavenumbers given by Equation (5.31) for µ̃f = 0.8. (b) The corresponding
values of τD/P . In both panels, symbols correspond to the approximation given by
Equation (5.29) for µ̃f = 0.8.
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Figure 5.4: τD/P of the Alfvén mode with m = 0 as a function of kza for µ̃f = 0.8. The
different line styles represent: the full solution (solid), the solution in the absence of
ion-neutral collisions, i.e., ηC = η (dashed), and the solution after neglecting Ohm’s dif-
fusion, i.e., η = 0 (dotted). The vertical dot-dashed line is the transitional wavenumber
given by Equation (5.15).

5.3.2 Kink modes

Now, we turn our attention to the kink mode. Figure 5.5a displays the kink mode
phase speed as a function of kza obtained by means of the PDE2D numerical code.
We see that the propagation of the kink wave is also constrained by the existence of
two critical wavenumbers, correctly described by Equations (5.28) and (5.47), denoted
by vertical lines. Note that since the left-hand side critical wavenumber is very small
(kc−

z a ≈ 5 × 10−7) and the horizontal axis of Figure 5.5a is in logarithmic scale, the
approximation for this critical wavenumber seems less accurate than that for the right-
hand side critical value, although the precision of both of them is similar. Drawing our
attention to the relevant range of kza, we obtain ω/kz ≈ ck as in the ideal case, so
diffusive effects do not seem relevant to wave propagation for the observed wavelengths.
The dependence of τD/P with kza is shown in Figure 5.5b. This result is very similar
to that obtained for the Alfvén mode, hence most of the comments of Section 5.3.1
regarding the Alfvén mode damping also apply to the kink mode case. Next, we consider
the analytical dispersion relation and solve Equation (5.40) for m = 1 and µ̃f = 0.8,
the corresponding result being plotted with symbols in Figure 5.5. The solution of the
analytical dispersion relation agrees well with the numerical solution in the range of kza
dominated by Cowling’s diffusion. As expected, the numerical and analytical solutions
do not agree for small kza because the effect of ohmic diffusion is not included in the
analytical dispersion relation.

We check the efficiency of the different damping mechanisms on the kink mode.
Figure 5.6 shows a comparison of the value of τD/P of the kink wave with that obtained
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Figure 5.5: (a) Normalized phase velocity of the kink mode as a function of kza for
µ̃f = 0.5, 0.6, 0.8, and 0.95. The vertical dotted lines are the approximated critical
wavenumbers given by Equations (5.28) and (5.47) for µ̃f = 0.8. (b) The corresponding
values of τD/P . In both panels, symbols correspond to the solution obtained by solving
the analytical dispersion relation (Eq. [5.40]) for µ̃f = 0.8.
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Figure 5.6: τD/P of the kink mode as a function of kza for µ̃f = 0.8. The different
line styles represent: the full solution (solid), the solution in the absence of ion-neutral
collisions, i.e., ηC = η and Ξ = 0 (dashed), and the solution after neglecting Ohm’s dif-
fusion, i.e., η = 0 (dotted). The vertical dot-dashed line is the transitional wavenumber
given by Equation (5.15).

by neglecting Ohm’s diffusion (η = 0) or ion-neutral collisions (ηC = η and Ξ = 0).
Only the solutions corresponding to µ̃f = 0.8 are displayed for the sake of simplicity.
The result for the kink mode is very similar to that obtained for the Alfvén mode
(see Fig. 5.4), namely that Ohm’s diffusion dominates for small kza and ion-neutral
collisions are dominant for large kza. The transition between both behaviors takes place
within the relevant range of kza, where τD/P � 10. Therefore, neither Ohm’s diffusion
nor ion-neutral collisions can provide damping times compatible with those observed.
By performing equivalent computations for other values of µ̃f , we conclude that, in
agreement with Forteza et al. (2007), only for an almost neutral plasma (µ̃f > 0.95) and
large kza, one can obtain a τD/P consistent with observations. Although, the efficiency
of Ohm’s diffusion and ion-neutral collisions is not enough to produce realistic kink
mode damping times, these mechanisms are much more efficient than the non-adiabatic
effects studied in Chapter 4 for the kink mode damping.

5.3.3 Slow modes

The last wave mode that we study in this investigation is the slow mode. We
numerically obtain the frequency of the radially fundamental mode with m = 1, but we
note again that the slow mode behavior is weakly affected by the value of the azimuthal
wavenumber. Figure 5.7a shows the slow mode phase speed as a function of kza. The
slow mode behavior is also affected by the presence of a critical wavenumber, which
is highly dependent on the ionization degree. The slow mode is totally damped for
kz smaller than the critical value. The presence of the critical wavenumber is correctly
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Figure 5.7: (a) Normalized phase velocity of the slow mode with m = 1 as a function
of kza for µ̃f = 0.5, 0.6, 0.8, and 0.95. The vertical dotted line is the approximated
critical wavenumber given by Equation (5.54) for µ̃f = 0.8. (b) The corresponding
values of τD/P . In both panels, symbols correspond to the approximation given by
Equation (5.49) for µ̃f = 0.8.
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described by the approximation (Eq. [5.54]), although the approximated value is slightly
larger than the actual one. We see that for large enough µ̃f , the critical kza falls inside
or is larger than the relevant values. This result has important implications from the
observational point of view, since it suggests that the slow wave might not propagate
in realistic, thin filament threads. For kza larger than the critical value, the slow mode
phase speed is close to the internal cusp speed, cTf .

On the other hand, Figure 5.7b displays τD/P again as a function of kza. The ratio
τD/P achieves very small values close to the position of the critical wavenumber. The
reason for this behavior is that the real part of the frequency tends to zero and so
the period tends to infinity. Also, we see that the damping time grows rapidly when
µ̃f → 0.5, i.e., the dependence of τD/P on µ̃f is more sensitive to the ionization degree
for an almost fully ionized plasma than for a weakly ionized plasma.

We take now µ̃f = 0.8 and compute the approximate slow mode frequency from
Equation (5.49). This result is plotted by means of symbols in both panels of Figure 5.7.
We see that the approximation is reasonably good for kza < 1 and near the critical kz.
However, it diverges from the numerical result for kza > 1 because the assumptions
considered for deriving Equation (5.49) are not satisfied for large kza, as commented in
Section 5.2.3.

Finally, the particular effect of Ohm’s diffusion and ion-neutral collisions on the
slow mode damping is assessed in Figure 5.8. We obtain that the slow mode damping
is entirely governed by ion-neutral collisions (Cowling’s diffusion). It is worth noting
that Ohm’s diffusion never becomes important for the slow mode damping because the
presence of the critical wavenumber does not allow the slow mode to propagate for
very small kza, where Ohm’s diffusion might be of relevance. In addition, Figure 5.7b
indicates that when µ̃f is large, the efficiency of ion-neutral collisions for the slow mode
damping is similar to that of non-adiabatic mechanisms studied in Chapter 4. This result
suggests that the joint effect of non-adiabatic mechanisms and Cowling’s diffusion may
produce a very efficient damping of slow waves in partially ionized filament threads.

5.4 Conclusion

In this Chapter, we have studied the propagation of Alfvén, kink, and slow MHD
waves in a partially ionized, homogeneous filament thread. Contrary to the fully ionized,
ideal case, we have found that wave propagation is constrained by the presence of critical
values of the longitudinal wavenumber. This result is of special relevance in the case of
the slow magnetoacoustic mode, since the critical wavenumber lies within the relevant
range, i.e., the observed wavelengths of prominence oscillations, for typical prominence
parameters. This might prevent the slow mode propagation in thin filament threads
and, therefore, this mode might not be observationally detectable.

Turning our attention to the wave damping, we have obtained that for both Alfvén
and kink waves, ion-neutral collisions (by means of Cowling’s diffusion) dominate for
large kza, i.e., short wavelengths, while Ohm’s diffusion is more important for small kza,
i.e., large wavelengths. On the contrary, the slow mode is totally governed by Cowl-
ing’s diffusion. With the exception of the slow mode, these mechanisms cannot provide
damping times compatible with those observed when typical values of the wavelength
are considered. In the case of both Alfvén and kink waves, one has to consider very
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Figure 5.8: τD/P of the slow mode with m = 1 as a function of kza for µ̃f = 0.8. The
different line styles represent: the full solution (solid), the solution in the absence of
ion-neutral collisions, i.e., ηC = η and Ξ = 0 (dashed), and the solution after neglecting
Ohm’s diffusion, i.e., η = 0 (symbols).

short wavelengths and almost neutral plasmas to obtain realistic values of the damping
time.

One must be aware that here we have considered a plasma composed only by hydro-
gen. It is interesting to estimate the effect of the presence of helium on the results. Soler
et al. (2010a) assessed the effect of neutral and singly ionized helium on the wave time
damping in a homogeneous, unbounded plasma with prominence conditions. They ob-
tained that the efficiency of Cowling’s diffusion is increased by the presence of helium,
due to the additional collisions of neutral and ionized hydrogen species with helium
species. However, when realistic abundances of helium in prominences are considered
(∼ 10%), it turns out that this effect has a very minor influence on the wave damping.
We expect that similar conclusions apply in the cylindrical case and so the presence of
helium can be safely neglected.
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6
Resonantly Damped Kink Magnetohydrodynamic

Waves in a Filament Thread∗

Among the damping mechanisms investigated in the previous Chapters, none of them
can produce kink mode damping times compatible with the observations of damped
transverse thread oscillations. Arregui et al. (2008) studied numerically the kink mode
damping by resonant absorption in the Alfvén continuum in pressure-less filament fine
structures. They obtained τD/P ≈ 3 for typical wavelengths of prominence oscillations
and realistic density contrasts. Resonant absorption has been previously investigated
as a damping mechanism for the kink mode in coronal flux tubes by, e.g., Ruderman
& Roberts (2002) and Goossens et al. (2002), who derived analytical expressions for
the damping time. Recent reviews by Goossens et al. (2006) and Goossens (2008) have
summarized the main results of the resonant damping of kink modes in coronal loops.
If prominence conditions are considered in the analytical expressions of Ruderman &
Roberts (2002) and Goossens et al. (2002), a very good agreement with the numerical
results of Arregui et al. (2008) is obtained. On the basis of the result by Arregui et al.
(2008), the process of resonant absorption also seems a good candidate to be responsible
for the kink mode attenuation in filament threads. Here, we study the efficiency of
resonant absorption for the damping of kink modes in fully ionized and partially ionized
filament threads.

As in previous Chapters, we combine numerical computations and analytical ap-
proximations to obtain the period and the damping time of kink modes in transversely
inhomogeneous filament threads. From an analytical point of view, the damping by
resonant absorption in both the Alfvén and slow continua is investigated in fully ionized
filament threads by means of the thin tube and thin boundary approximations (Sec 6.1).
We assess the particular role on the kink mode damping of the coupling to Alfvén con-
tinuum modes and to slow continuum modes. Next, we consider partial ionization of
the filament plasma and study its effect on the process of resonant absorption and on
the damping of kink modes (Sec 6.2). In both the fully ionized and partially ionized
cases, the general MHD equations are solved numerically, and the numerical results are
compared with the previously obtained approximations.

∗This Chapter is based on the results of R. Soler, R. Oliver, J. L. Ballester, & M. Goossens 2009,
Damping of Filament Thread Oscillations: Effect of the Slow Continuum, ApJ, 695, L166 and R. Soler,
R. Oliver, & J. L. Ballester 2009, Resonantly Damped Kink Magnetohydrodynamic Waves in a Partially
Ionized Filament Thread, ApJ, 707, 662.
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Figure 6.1: Sketch of the filament thread model considered in this Chapter.

6.1 Resonant absorption in the Alfvén and slow continua

6.1.1 Model configuration

As in previous Chapters, the model for the present equilibrium configuration is a
straight cylinder with prominence-like conditions embedded in an unbounded corona.
Here, we include a transversely inhomogeneous transitional layer between both regions
(see Fig. 6.1). We consider that the filament plasma is fully ionized. The effect of
partial ionization is assessed in Section 6.2. Therefore, our model is equivalent to that
of Arregui et al. (2008), although they neglected plasma pressure and adopted the β = 0
approximation. The plasma β in solar prominences is probably small, but it is definitely
nonzero. We take gas pressure into account, i.e. the β 6= 0 case, and assess the effect of
the plasma β on the resonant damping of kink modes.

The density profile, ρ0 (r), is adopted after Ruderman & Roberts (2002) and only
depends on the radial direction as

ρ0 (r) =


ρf , if r ≤ a− l/2,

ρtr (r) , if a− l/2 < r < a+ l/2,
ρc, if r ≥ a+ l/2,

�� ��6.1

with

ρtr (r) =
ρf

2

{(
1 +

ρc

ρf

)
−
(

1− ρc

ρf

)
sin
[π
l

(r − a)
]}

.
�� ��6.2

In these expressions, ρf is the filament thread density, ρc is the coronal density, a is the
tube mean radius, and l is the transitional layer width. The limits l/a = 0 and l/a = 2
correspond to a homogeneous tube and a fully inhomogeneous tube, respectively. We
use the following densities: ρf = 5 × 10−11 kg m−3 and ρc = 2.5 × 10−13 kg m−3.
Therefore, the density contrast between the internal and external plasma is ρf/ρc = 200.
The plasma temperature is related to the density through the usual ideal gas equation
(Eq. [2.14]). The radial profile of the effective temperature, T̃0 (r), is

T̃0 (r) =


T̃f , if r ≤ a− l/2,

T̃tr (r) , if a− l/2 < r < a+ l/2,
T̃c, if r ≥ a+ l/2,

�� ��6.3
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with

T̃tr (r) = 2T̃f

{(
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T̃f

T̃c
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−
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1− T̃f

T̃c

)
sin
[π
l

(r − a)
]}−1

.
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We consider T̃f = 104 K and T̃c = 2 × 106 K for the internal and external effective
temperatures, respectively. The magnetic field is taken homogeneous and orientated
along the z-direction, ~B0 = B0êz, with B0 = 5 G everywhere. With these parameters,
the total pressure is constant everywhere in the equilibrium, and β ≈ 0.04.

In the presence of the transitional layer, it is well-known that the kink mode is
resonantly coupled to Alfvén continuum modes. In terms of the frequency, this means
that the kink frequency, ωk, is between the internal, ωAf , and external, ωAc, Alfvén
frequencies, i.e., ωAf < ωk < ωAc. This last condition can be equivalently expressed in
terms of the phase velocity, so vAf < ck < vAc. It turns out that, for filament conditions,
the kink mode phase velocity is also within the slow (or cusp) continuum that extends
between the internal, cTf , and external, cTc, cusp speeds, i.e., cTf < ck < cTc. In such a
case, the kink mode is not only resonantly coupled to Alfvén continuum modes but also
to slow continuum modes. The frequency of the kink mode is both within the Alfvén
and slow continua because of the high density and low temperature of the prominence
material in comparison with the coronal values. Hence, the slow continuum damping
arises as an additional mechanism to damp the kink mode in filament threads, whose
effect was not included in the investigation by Arregui et al. (2008). For coronal loops
the kink frequency is outside the slow continuum. A coronal loop is presumably hotter
and denser than its surrounding corona, so the ordering of cusp, Alfvén, and kink speeds
is cTc < cTf < vAf < ck < vAc. Therefore, there is no slow resonance for the kink mode
in coronal loops. Although the slow resonance has been previously investigated in the
context of absorption of driven MHD waves in the solar atmosphere (e.g., Čadež et
al. 1997; Erdélyi et al. 2001) and sunspots (e.g., Keppens 1996), the effect of the slow
resonance on the damping of the kink modes has not been investigated before.

6.1.2 Analytical investigation

We consider the linear, ideal MHD equations for the β 6= 0 case (Eqs. [2.92]–[2.96])
and adopt cylindrical coordinates. All symbols in the following expressions have the
same meaning as in previous Chapters. We follow a normal mode approach and since
ϕ and z are ignorable coordinates, the perturbed quantities are put proportional to
exp (imϕ+ ikzz − iωt). In the absence of a transitional layer, i.e., l/a = 0, the dispersion
relation is obtained by imposing the continuity of the Lagrangian radial displacement, ξr,
and the total pressure perturbation, pT1 , at r = a, and corresponds to Equation (3.18).

When an inhomogeneous transitional layer is present in the model, we cannot obtain
an analytical expression for the dispersion relation unless some assumptions are made.
The position of the Alfvén, rA, and slow, rs, resonance points can be computed by
equating the kink frequency, ωk, to the local Alfvén, ωA = vAkz, and cusp, ωc = cTkz,
frequencies, respectively. By this procedure, we obtain

rA = a+
l

π
arcsin

[
ρf + ρc

ρf − ρc
−

2v2
Afk

2
z

ω2
k

ρf

(ρf − ρc)

]
,

�� ��6.5
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for the Alfvén resonance point, and

rs = a+
l

π
arcsin

[
ρf + ρc

ρf − ρc
−

2c2Tfk
2
z

ω2
k

ρf

(ρf − ρc)

]
,

�� ��6.6

for the slow resonance point. Note that we need the value of ωk to determine both rA
and rs. The ideal MHD equations are singular at r = rA and r = rs. The singularity is
removed if dissipative effects, such as magnetic diffusion or viscosity, are considered in
a region around the resonance point, i.e., the dissipative layer.

The jump conditions and the Thin Boundary approximation

A method for obtaining an analytical dispersion relation is to combine the jump
conditions at the resonance points and the approximation of the thin boundary (TB).
The jump conditions were derived by Sakurai et al. (1991a) and Goossens et al. (1995)
for the driven problem and later by Tirry & Goossens (1996) for the eigenvalue problem.
This method was used, e.g., by Sakurai et al. (1991b) for determining the absorption of
sound waves in sunspots, Goossens et al. (1992) for determining surface eigenmodes in
incompressible and compressible plasmas, Van Doorsselaere et al. (2004) for kink eigen-
modes in pressure-less coronal loops, and in a number of other papers in the context of
MHD waves in the solar atmosphere (e.g., Erdélyi et al. 1995; Keppens 1996; Stenuit et
al. 1998; Andries et al. 2000; Goossens et al. 2009, among other works). The assump-
tions behind the TB approximation and its applications have been recently reviewed
by Goossens (2008). In short, the main assumption of the TB approximation is that
there is a region around the dissipative layer where both ideal and dissipative MHD
apply. If one takes a sufficiently thin transitional layer, i.e., l/a � 1, we can assume
that the thickness of the dissipative layer, namely δ, roughly coincides with the width
of the whole inhomogeneous transitional layer, i.e. δ ∼ l. So, we can simply use the
jump conditions to connect analytically the perturbations from the homogeneous part
of the tube to those of the external medium, and avoid the numerical integration of the
dissipative MHD equations across the inhomogeneous region. This method is in princi-
ple only valid when the inhomogeneous length-scale and the resonant layer have similar
sizes, but Van Doorsselaere et al. (2004) showed numerically that the results obtained in
the TB approximation are still approximately valid even when the assumption l/a� 1
is not strictly fulfilled. Apart from the Alfvén resonance, Sakurai et al. (1991a) also
provided jump conditions for the slow resonance, which can be applied to the present
situation. Hence, the jump conditions and the TB formalism allows us to assess the
particular contribution of the slow resonance to the kink mode damping.

The jump conditions at the Alfvén resonance point, r = rA, for the radial displace-
ment and the total pressure perturbation provided by Sakurai et al. (1991a) in the case
of a straight magnetic field are,

[[ξr]] = −iπ
m2/r2A
|ρ0∆A|rA

pT, [[pT1 ]] = 0, at r = rA,
�� ��6.7

where [[X]] = Xc−Xf stands for the jump of the quantityX, and ∆A = d
dr

[
ω2 − ω2

A (r)
]
.

The respective jump conditions at the slow resonance point, r = rs, are

[[ξr]] = −iπ k2
z

|ρ0∆c|rs

(
c2s

c2s + v2
A

)2

pT1 , [[pT1 ]] = 0, at r = rs,
�� ��6.8
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where ∆c = d
dr

[
ω2 − ω2

c (r)
]
, and the factor c2s

c2s+v2
A

= β
β+2/γ ≈ 0.034 is a constant

everywhere in the equilibrium, with γ = 5/3 the adiabatic index. The Alfvén jump
conditions (Eq. [6.7]) are independent of kz, but they depend on m, so for m = 0
there is no Alfvén resonance. On the contrary, the slow jump conditions (Eq. [6.8]) are
independent of m, but they depend on kz, so for kz = 0 there is no slow resonance.

In our model the magnetic field is straight and homogeneous so that the variations
of the local Alfvén frequency and the local cusp (or slow) frequency are only due to the
variation of the density. In addition, from the resonance condition we have ωA (rA) =
ωc (rs) = ωk, thus

|ρ0∆A|rA
= ω2

k |∂rρ0|rA
,

�� ��6.9

and

|ρ0∆c|rs
= ω2

k |∂rρ0|rs
,

�� ��6.10

where |∂rρ0|rA
and |∂rρ0|rs

are the moduli of the radial derivative of the density profile
evaluated at r = rA and r = rs, respectively. Next, we apply the jump conditions to
obtain a correction to the dispersion relation (Eq. [3.18]) due to both resonances in the
TB approximation, namely

nc

ρc

(
ω2 − k2

zv
2
Ac

)K ′
m (nca)

Km (nca)
− mf

ρf

(
ω2 − k2

zv
2
Af

) J ′m (mfa)
Jm (mfa)

= −iπ
m2/r2A

ω2
k |∂rρ0|rA

− iπ
(

c2s
c2s + v2

A

)2
k2

z

ω2
k |∂rρ0|rs

,
�� ��6.11

with mf and nc given by Equation (3.4). The first term on the right-hand side of
Equation (6.11) corresponds to the effect of the Alfvén resonance, while the second term
is present due to the slow resonance. If both terms are dropped, Equation (6.11) simply
reduces to Equation (3.18). When only one of the two terms is present, we can assess
the particular effect of the corresponding resonance. In order to solve Equation (6.11),
we need the value of the kink frequency and the resonance positions. For this reason,
we use a two-step procedure. First, we solve the dispersion relation for the case l/a = 0
(Eq. [3.18]) and obtain ωk. Next, we assume that the real part of the frequency is
approximately the same when the inhomogeneous transitional layer is included, allowing
us to determine rA and rs from Equations (6.5) and (6.6), respectively. Subsequently,
we compute |∂rρ0|rA

and |∂rρ0|rs
. Finally, we solve the complete dispersion relation

(Eq. [6.11]) with these parameters.

Expressions in the thin tube limit

Further analytical progress can be made by combining the thin boundary (TB)
and the thin tube (TT) approximations. The combination of both the TB and TT
approximations has been applied in several works (e.g., Goossens et al. 1992; Ruderman
& Roberts 2002; Goossens et al. 2002, 2009). We perform an asymptotic expansion
for small arguments of the Bessel functions in Equation (3.18) by considering the long-
wavelength limit, i.e., kza � 1, and only keep the lowest order, nonzero term of the
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expansion. Thus, the dispersion relation becomes

ρc
m/a(

ω2 − k2
zv

2
Af

) + ρf
m/a(

ω2 − k2
zv

2
Ac

)
− iπ

ρfρc

ω2
k

[
m2/r2A
|∂rρ0|rA

+
k2

z

|∂rρ0|rs

(
c2s

c2s + v2
A

)2
]

= 0.
�� ��6.12

Now, we write the frequency as ω = ωk + iωI. Expressions for |∂rρ0|rA
and |∂rρ0|rs

are obtained from the density profile (Eq. [6.1]) as

|∂rρ0|A =
(
ρf − ρc

l

)
π

2
cosαA, |∂rρ0|s =

(
ρf − ρc

l

)
π

2
cosαs,

�� ��6.13

with αA = π (rA − a) /l and αs = π (rs − a) /l. We insert these expressions in Equa-
tion (6.12) and neglect terms with ω2

I . After some algebraic manipulations, we obtain
an expression for the ratio ωk/ωI. It is straightforward to give an expression for τD/P ,
namely

τD
P

= F 1
(l/a)

(
ρf + ρc

ρf − ρc

)[
m

cosαA
+

(kza)
2

m

(
c2s

c2s + v2
A

)2 1
cosαs

]−1

,
�� ��6.14

where F is a numerical factor that depends on the density profile (F = 2/π in our
sinusoidal case). As in previous expressions, the term with kz corresponds to the con-
tribution of the slow resonance. If this term is dropped, Equation (6.14) only takes
the Alfvén resonance into account and, for m = 1 and cosαA = 1, is equivalent to the
expression first obtained by Goossens et al. (1992) in their Equation (77) or, in a form
more similar to Equation (6.14), by Ruderman & Roberts (2002) in their Equation (56).

We approximate the kink mode frequency by its expression in the TT case (Eq. [3.20]).
Thus, the resonance positions can be estimated. From Equation (6.5) we directly get
rA ≈ a, whereas after a Taylor expansion of the arcsin function, Equation (6.6) provides

rs ≈ a+
l

π

(
ρf + ρc

ρf − ρc

)(
1− c2s

c2s + v2
A

)
,

�� ��6.15

which for ρf � ρc and v2
A � c2s simplifies to rs ≈ a+ l/π. We obtain that the resonances

occur at different positions, with rs > rA. For the values of rs and rA in the TT case,
cosαA ≈ 1 and cosαs ≈ cos (1) ≈ 0.54. Now, we take m = 1, l/a = 0.2, and kza = 10−2

to make a simple calculation. Equation (6.14) gives τD/P ≈ 3.21. In agreement with
Arregui et al. (2008), the obtained damping ratio is consistent with the observations of
damped transverse thread oscillations.

Next, we assume rA ≈ rs ≈ a for simplicity, so cosαA ≈ cosαs ≈ 1. The par-
ticular contribution of each resonance is estimated by the ratio of the two terms in
Equation (6.14), namely

(τD)A
(τD)s

≈ (kza)
2

m2

(
c2s

c2s + v2
A

)2

,
�� ��6.16

where (τD)A and (τD)s are the damping times exclusively due to the Alfvén and slow reso-
nances, respectively. Assuming the same parameters as before, we obtain (τD)A / (τD)s ≈
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10−7, meaning that the Alfvén resonance is much more efficient than the slow resonance
for damping the kink mode. We can consider the limit case of incompressible plasma,
i.e., cs →∞, so c2s

c2s+v2
A
→ 1. Therefore, (τD)A / (τD)s ≈ (kza/m)2 � 1 for realistic values

of kza. By means of these simple calculations, we can anticipate two important results.
First of all, the kink mode damping by resonant absorption can explain the observed
attenuation of transverse thread oscillations, and second, the slow resonance is irrelevant
for the kink mode damping in comparison with the Alfvén resonance. Both results are
checked next by our numerical computations.

6.1.3 Numerical procedure

In addition to the analytical approximations, we also numerically solve the full eigen-
value problem by means of the PDE2D code (Sewell 2005). We consider the linear MHD
equations and include the effect of Ohm’s diffusion in the induction equation in order
to remove the singularity at the resonance positions. Thus, the equations solved with
PDE2D are

iωρ1 = ρ0

(
v′r +

vr

r
+
im

r
vϕ + ikzvz

)
+ ρ′0vr,

�� ��6.17

iωvr =
1
ρ0
p′1 −

v2
A

B0

(
ikzBr −B′

z

)
,

�� ��6.18

iωvϕ =
im

r

1
ρ0
p1 −

v2
A

B0

(
ikzBϕ −

im

r
Bz

)
,

�� ��6.19

iωvz =
ikz

ρ0
p1,

�� ��6.20

iωBr = −ikzB0vr + η

(
k2

zBr +
m2

r2
Br +

im

r
B′

ϕ +
im

r2
Bϕ + ikzB

′
z

)
,

�� ��6.21

iωBϕ = −ikzB0vϕ

− η
(
kz
m

r
Bz +B′′

ϕ +
1
r
B′

ϕ −
1
r2
Bϕ − k2

zBϕ −
im

r
B′

r +
im

r2
Br

)
,

�� ��6.22

iωBz = B0

(
v′r +

1
r
vr +

im

r
vϕ

)
− η

(
B′′

z +
1
r
B′

z −
m2

r2
Bz − ikzB

′
r −

ikz

r
Br + kz

m

r
Bϕ

)
,

�� ��6.23

iω
(
p1 − c2sρ1

)
= −c2sρ′0vr,

�� ��6.24

where the prime denotes derivative with respect to r.
The set-up conditions for the PDE2D code are those explained in Section 5.1.2. Here,

we use a nonuniform grid with a large density of grid points within the inhomogeneous
transitional layer to correctly describe the small spatial scales that develop due to both
resonances. The PDE2D code has been previously used by, e.g., Terradas et al. (2006)
and Arregui et al. (2008) to investigate the process of resonant absorption in coronal
loops and filament threads, respectively.

We assume a constant and uniform value of Ohm’s diffusivity, η, in Equations (6.17)–
(6.24). It is important recalling that we do not study here the damping by magnetic
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diffusion (which was done in Chap. 5) and that diffusion is only included to remove the
singularity from the equations. This could be also accomplished by considering, e.g.,
viscosity. The actual value of η and the magnetic Reynolds number, Rm = vAfa/η, are
not relevant as long as Rm is large enough for the damping by magnetic diffusion to
be much less efficient than that due to resonant absorption. The magnetic Reynolds
number in the corona is considered to be around 1012, but using this value requires
taking an enormous number of grid points in the numerical computations because of
the dependence of the dissipative layer thickness with Rm. Sakurai et al. (1991a) give
expressions for the thickness of the Alfvén, δA, and slow, δc, dissipative layers, namely

δA =
[∣∣∣∣ ω∆A

∣∣∣∣ η]1/3

rA

, δc =
[∣∣∣∣ ω∆c

∣∣∣∣ ω2
c

ω2
A

η

]1/3

rs

.
�� ��6.25

We see that both δA and δc are proportional to R−1/3
m . Also, it is straight-forward to

check that δA > δc for the same value of Rm. We therefore use a smaller value of Rm,
and consequently a smaller number of grid points, but make sure that the damping time
is still independent of Rm and that there are enough grid points within the dissipative
layers. In the next Section, these numerical results are compared with the analytical
approximations.

6.1.4 Results

Since we focus our investigation on the kink mode, we fix m = 1 in all computations.
First, we take kza = 10−2 and l/a = 0.2. We numerically compute (see Fig. 6.2) the
kink mode eigenfunctions: the velocity perturbations, vr, vϕ, and vz, the magnetic field
perturbations, Br, Bϕ, and Bz, the density perturbation, ρ1, and the gas pressure per-
turbation, p1. The behavior of Br and Bϕ is similar to that of vr and vϕ, respectively,
and hence they are not plotted in Figure 6.2. Because of the resonances, the perturba-
tions show large peaks within the transitional layer. Figure 6.3 displays a close-up of the
eigenfunctions in the inhomogeneous layer, which allows us to ascertain the position of
the resonances in more detail. The peaks of the perturbations vr, vϕ, and ρ1 are related
to the Alfvén resonance, while the perturbations vz, Bz, and p1 are more affected by
the slow resonance and their peaks appear at a different position. In agreement with
the analytical expressions for the dissipative layer thickness (Eq. [6.25]), we see that the
peaks related to the Alfvén resonance are wider than those related to the slow reso-
nance, meaning that the slow resonance produces a thinner resonant layer. Considering
the numerical value of the real part of the frequency, we get rA/a ≈ 1 and rs/a ≈ 1.08
from Equations (6.5) and (6.6), respectively. Both values are in good agreement with
the position of peaks in Figures 6.2 and 6.3. We have also checked that the total pressure
perturbation, i.e., pT1 = p1 +B0Bz/µ, is almost constant across the transitional layer.

Next, we plot in Figure 6.4a the ratio of the damping time to the period, τD/P , as a
function of kza corresponding to the kink mode for l/a = 0.2. In this Figure, we compare
the numerical results with those obtained from the analytical dispersion relation in the
TB approximation (Eq. [6.11]). The individual contribution of each resonance in the
TB approximation has been determined by solving Equation (6.11) and only taking into
account the term on the right-hand side related to the desired resonance. At first sight,
we see that the slow resonance (dashed line in Fig. 6.4a) is much less efficient than the
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Figure 6.2: Eigenfunctions of kink mode perturbations versus r/a for kza = 10−2 and
l/a = 0.2. (a) vr, (b) vϕ, (c) vz, (d) Bz, (e) ρ1, and (f) p1. The solid line is the real part
and the dotted line is the imaginary part of the corresponding eigenfunction. The grey
zone denotes the homogeneous part of the tube whereas the brown region corresponds
to the inhomogeneous transitional layer. Arbitrary units have been used.
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Figure 6.3: Same as Figure 6.2, but focusing on the inhomogeneous transitional layer
(the brown region in Fig 6.2). The vertical dashed and dot-dashed lines correspond to
the Alfvén and slow resonance positions given by Equations (6.5) and (6.6), respectively.
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Alfvén resonance (symbols) in damping the kink mode. For the wavenumbers relevant
to prominence oscillations, 10−3 < kza < 10−1, the value of τD/P related to the slow
resonance is between 4 and 8 orders of magnitude larger than the ratio obtained by the
Alfvén resonance. On the other hand, the complete numerical solution (solid line) is
close to the result for the Alfvén resonance. In agreement with the result in the thin
tube limit (Eq. [6.16]), we obtain τD/P ≈ 3 in the relevant range of kza. For larger kza,
the value of τD/P increases and the efficiency of the Alfvén resonance as a damping
mechanism decreases. For kza ≈ 102 both the slow and the Alfvén resonances produce
similar (and inefficient) damping times.

Figure 6.4b displays τD/P as a function of the transitional layer thickness, l/a, for
kza = 10−2. As stated by Arregui et al. (2008, see their Fig. 2d), the discrepancy between
the numerical result and the TB approximation increases with l/a, the difference being
around 20% for l/a = 1. However, for small, realistic values of l/a this discrepancy
is less important and the TB approach is a very good approximation to the numerical
result. We also see that the Alfvén resonance is always much more efficient than the
slow resonance for all values of l/a.

The present result shows that, contrary to the Alfvén resonance, the slow resonance
is very inefficient in damping the kink mode for typical prominence conditions. Although
we have only presented the results for kink modes, this conclusion also holds for fluting
modes (m ≥ 2). The very inefficient kink mode damping due to the slow resonance is
comparable to that due to non-adiabatic effects studied in Chapter 4. Therefore, we
conclude that the effect of the slow resonance is not relevant to the damping of transverse
thread oscillations, which is more likely governed by the Alfvén resonance.

6.2 Resonant absorption in a partially ionized filament thread

Resonant absorption seems to be the most likely explanation for the kink mode
damping, since it is the only mechanism of all studied here that can produce the observed
ratio of the damping time to the period. On the other hand, in Chapter 5 we saw that
the effect of partial ionization could also be relevant, at least for short wavelengths and
small ionization degrees. The aim of the present Section is to take both mechanisms
into account and to assess their combined effect on the kink mode damping. We have
found no similar work in the literature in which the phenomenon of resonant absorption
is studied in a partially ionized plasma.

6.2.1 Equilibrium

We assume the same filament thread model as in Section 6.1, but since we already
know that the slow resonance is irrelevant, we adopt the β = 0 approximation for the
sake of simplicity. In addition, we consider here the prominence material to be partially
ionized. Thus, the plasma properties are characterized by two quantities: the density,
ρ0, and the ionization fraction, µ̃, which gives us information about the plasma degree
of ionization. The dependence of the density with the radial direction is again the
sinusoidal profile given by Equation (6.1), where the internal and external densities take
the same values. We also choose the same functional dependence for the ionization
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Figure 6.4: (a) τD/P of the kink mode as a function of kza for l/a = 0.2. (b) τD/P
of the kink mode as a function of l/a for kza = 10−2. In both panels, the different
line styles represent: the full numerical solution (solid), the solution exclusively due to
the slow resonance in the TB approximation (dashed), and the solution exclusively due
to the Alfvén resonance in the TB approximation (symbols). The dotted line is the
approximation in the TT limit given by Equation (6.14).

118



6.2. RESONANT ABSORPTION IN A PARTIALLY IONIZED THREAD

Figure 6.5: Radial profiles of (a) η̃, (b) η̃C, and (c) η̃H considered in Section 6.2. The
transitional layer (shaded zone) is enhanced in order to see the change from filament to
coronal values. The line styles represent different ionization degrees: µ̃f = 0.5 (dotted
line), µ̃f = 0.6 (dashed line), µ̃f = 0.8 (solid line), and µ̃f = 0.95 (dash-dotted line).

fraction profile,

µ̃ (r) =


µ̃f , if r ≤ a− l/2,

µ̃tr (r) , if a− l/2 < r < a+ l/2,
µ̃c, if r ≥ a+ l/2,

�� ��6.26

with

µ̃tr (r) =
µ̃f

2

{(
1 +

µ̃c

µ̃f

)
−
(

1− µ̃c

µ̃f

)
sin
[π
l

(r − a)
]}

,
�� ��6.27

where the filament ionization fraction, µ̃f , is considered a free parameter and the corona
is assumed to be fully ionized, so µ̃c = 0.5. Recent studies by Gouttebroze & Labrosse
(2009) on radiative transfer in cylindrical threads suggest (see their Fig. 1b) an almost
uniform ionization degree in the core of the thread surrounded by a transitional zone
where the plasma ionization degree abruptly increases toward fully ionized coronal con-
ditions. Our ionization fraction profile (Eqs. [6.26] and [6.27]) attempts to represent
such a behavior.

We use the basic MHD equations for a partially ionized plasma in the one-fluid
approach (Eqs. [2.82] and [2.86]). After considering linear perturbations and removing
gas pressure terms by setting β = 0, the relevant equations for our investigation are the
momentum equation and the induction equation, that contains the terms corresponding
to Ohm’s, ambipolar, and Hall’s diffusion, namely

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
−∇×

(
η∇× ~B1

)
−∇×

[
ηH

(
∇× ~B1

)
× ~B0

]
+ ∇×

{
ηC − η
B2

0

[(
∇× ~B1

)
× ~B0

]
× ~B0

}
.

�� ��6.28

Since η, ηC, and ηH are functions of the plasma physical conditions (Eq. [2.45]–[2.47]),
their values in our equilibrium depend on the radial coordinate. Therefore, terms in-
cluding radial derivatives of these quantities arise in Equation (6.28). Figure 6.5 displays
the radial profiles of the dimensionless diffusivities η̃, η̃C, and η̃H (Eq. [5.11]) according
to the equilibrium properties. This Figure focuses on the transitional layer, where the
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dimensionless coefficients vary by several orders of magnitude from internal to external
values. In a homogeneous thread, i.e., for l/a = 0, Hall’s diffusion is irrelevant in com-
parison with Ohm’s and Cowling’s diffusion (see Sec. 5.1.3). However, the small spatial
scales that develop due to the Alfvén resonance might cause the dimensional analysis of
Section 5.1.3 not to apply for the case l/a 6= 0. For this reason, we keep Hall’s term in
the following numerical computations.

6.2.2 Analytical expressions

As in Section 5.2.2, it is possible to give an analytical dispersion relation for the case
l/a = 0 when the terms with η and ηH are dropped from the induction equation. This
dispersion relation corresponds to Equation (5.40). Our aim is to extend this analytical
investigation to the case l/a 6= 0. To do so, we use again the jump conditions for the
radial displacement and the total pressure perturbation provided by Equation (6.7) in
combination with the TB approach. An important result for the present investigation
was obtained by Goossens et al. (1995), who proved that the jump conditions derived
by Sakurai et al. (1991a) for Alfvén resonances in ideal MHD remain valid in dissipative
MHD. This also allows us to apply the jump conditions derived by Sakurai et al. (1991a)
to the present case. Hence, we arrive at the dispersion relation in the TB approximation,
namely

nc

ρc

(
ω2 − k2

zΓ2
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)K ′
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) J ′m (mfa)
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= −iπ
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ω2
k |∂rρ0|rA

,
�� ��6.29

with mf and nc defined in Equation (5.41), and ΓA given by Equation (5.21).
As in the fully ionized case, we go further analytically and consider the TT ap-

proximation. We perform a first order, asymptotic expansion of the Bessel functions of
Equation (6.29) for kza� 1. The dispersion relation becomes
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Now, we write the frequency as ω = ωk + iωI, and the modified Alfvén speed squared is
approximated by Γ2

A ≈ v2
A − iωkηC. We insert these expressions in Equation (6.30) and

neglect terms with ω2
I and ωIk

2
z . It is straight-forward to obtain an expression for the

ratio ωI/ωk, namely
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) . �� ��6.31

The first term on the right-hand side of Equation (6.31) owes its existence to the term in
the dispersion relation related to the TB approximation and represents the contribution
of resonant absorption. For long wavelengths, the factor

(
1/v2

Af + 1/v2
Ac

)
ηCfηCck

2
z/2 can

be neglected, so the term related to the resonant damping is independent of the value
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6.2. RESONANT ABSORPTION IN A PARTIALLY IONIZED THREAD

of the Cowling’s diffusivity and, therefore, of the ionization degree. Then, the term of
Equation (6.31) due to the resonant damping takes the same form as in a fully ionized
plasma. On the other hand, the second term in the right-hand side of Equation (6.31)
is related to the damping by Cowling’s diffusion and is also present in the case l/a = 0
(see Eq. [5.44]). This term is proportional to kz, so we also expect it to be of a minor
influence in the TT regime.

Next, we take into account that for the present density profile in the transitional
layer and kza� 1, rA ≈ a and |∂rρ0|rA

≈ π (ρf − ρc) /2l. We insert this last expression
in Equation (6.31) and use it to give a relation for the ratio of the damping time to the
period as

τD
P

= F

[
m

(
l

a

)(
ρf − ρc

ρf + ρc

)
+

2 (ρf η̃Cf + ρcη̃Cc) kza√
2ρf (ρf + ρf)

]−1

,
�� ��6.32

where F = 2/π and both Cowling’s diffusivities are expressed in their dimensionless
form. To perform a simple application, we compute τD/P from Equation (6.32) in the
case m = 1, kza = 10−2, and l/a = 0.2, resulting in τD/P ≈ 3.18 for a fully ionized
thread (µ̃f = 0.5), and τD/P ≈ 3.16 for an almost neutral thread (µ̃f = 0.95). We note
that the obtained damping times are consistent with the observations. Furthermore,
the ratio τD/P depends only very slightly on the ionization degree, suggesting that
resonant absorption dominates over Cowling’s diffusion. To check this last statement,
we compute the ratio of the two terms on the right-hand side of Equation (6.32), which
allows us to compare the damping times exclusively due to resonant absorption, (τD)RA,
and Cowling’s diffusion, (τD)C. Thus,

(τD)RA

(τD)C
=

√
2 (ρf + ρc)

ρf

(
ρf η̃Cf + ρcη̃Cc

ρf − ρc

)
kza

m (l/a)
.

�� ��6.33

This last expression can be further simplified by considering that in filament threads
ρf � ρc and η̃Cf � η̃Cc, so that

(τD)RA

(τD)C
≈
√

2η̃Cf
kza

m (l/a)
.

�� ��6.34

We see that the efficiency of Cowling’s diffusion with respect to that of resonant absorp-
tion increases with kza and µ̃f (through η̃Cf). Considering the same parameters as before,
one obtains (τD)RA / (τD)C ≈ 2 × 10−8 for µ̃f = 0.5, and (τD)RA / (τD)C ≈ 6 × 10−3 for
µ̃f = 0.95, meaning that resonant absorption is much more efficient than Cowling’s diffu-
sion. It is also possible to give an estimation of the wavenumber for which Cowling’s dif-
fusion becomes more important than resonant absorption by setting (τD)RA / (τD)C ≈ 1
in Equation (6.34). So, one gets

kza ≈
m (l/a)√

2η̃Cf

.
�� ��6.35

Considering again the same parameters, Equation (6.35) gives kza ≈ 5×105 for µ̃f = 0.5,
and kza ≈ 1.7 for µ̃f = 0.95. Since Equation (6.34) is valid only for kza� 1, we expect
resonant absorption to be the dominant damping mechanism in the TT regime even for
an almost neutral filament plasma.
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6.2.3 Numerical computations

The equations solved by PDE2D in the present partially ionized case are,
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and vz = 0 since no longitudinal displacements are allowed for β = 0. The numerical
procedure is identical to than in the fully ionized case (see Sec. 6.1.3). However, the
values of the magnetic diffusivities are not imposed ad-hoc here but computed according
to the equilibrium physical properties (see Fig. 6.5).

6.2.4 Results

First, we compare the kink mode τD/P in the presence of a transitional layer with
the value previously obtained in Chapter 5 (Fig. 5.5) for a homogeneous thread. This
is done in Figure 6.6a, where we plot the results corresponding to several values of the
transitional layer width for a fixed µ̃f . Some relevant differences appear with respect
to the case l/a = 0. First, we see that τD/P is dramatically reduced for intermediate
values of kza, including the relevant range. In this region, the ratio τD/P becomes
smaller as l/a is increased, a behavior consistent with damping by resonant absorption.
We confirm this statement by looking at the eigenfunctions of perturbations, which show
large-amplitude oscillations at the Alfvén resonance position. We do not include a plot of
the eigenfunctions here since they are very similar to those displayed in Figures 6.2 and
6.3 for a fully ionized plasma. Therefore, the presence of diffusion terms due to partial
ionization in the induction equation does not suppress the process of resonant absorption.
We also see that the ratio τD/P for large kza is independent of the transitional layer
width and coincides with the solution in the absence of transitional layer. The cause
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6.2. RESONANT ABSORPTION IN A PARTIALLY IONIZED THREAD

Figure 6.6: τD/P of the kink mode in a partially ionized thread as a function of kza.
(a) Results with µ̃f = 0.8 for different values of l/a. Symbols are the solution in the TB
approximation given by solving Equation (6.29) for l/a = 0.2. (b) Results for l/a = 0.2
and for different values of µ̃f . The different line styles are labeled within the Figure.
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Figure 6.7: τD/P of the kink mode in a partially ionized thread as a function of kza
for µ̃f = 0.8 and l/a = 0.2. The different line styles represent: the full solution (solid),
the solution in the absence of ion-neutral collisions (dotted), and the solution after
neglecting Hall’s diffusion (symbols).

of this behavior is that perturbations are essentially confined within the homogeneous
part of the thread for large kza, and the kink mode is mainly governed by the internal
physical conditions. On the other hand, the solution for very small kza is completely
different when l/a 6= 0. We note that the inclusion of the inhomogeneous transitional
layer removes the smaller critical wavenumber, kc−

z , and consequently the kink mode
exists for very small values of kza (see details regarding the critical wavenumber in
Sec. 5.2.2).

Now, we study in Figure 6.6b the dependence of τD/P on the ionization degree for a
fixed l/a. It turns out that the ionization degree is only relevant for large kza, for which
the ratio τD/P significantly depends on µ̃f . Figure 6.7 allows us to shed light on this
result. Here, we assess the ranges of kza where Cowling’s and Hall’s diffusion dominate.
As in the homogeneous thread case, we find that Hall’s diffusion is irrelevant in the whole
studied range of kza, while Cowling’s diffusion, caused by the presence of neutrals,
dominates the damping for large kza. In the whole range of relevant wavenumbers,
resonant absorption is the most efficient damping mechanism, with the damping ratio
independent of the ionization degree as predicted by Equation (6.32). On the contrary,
we find that ohmic diffusion dominates for very small kza. It is important noting that
although the kink mode is still resonantly coupled to Alfvén continuum modes for very
small kza, the damping time related to Ohm’s dissipation becomes smaller than that
due to resonant absorption, meaning that the kink wave is mainly damped by ohmic
diffusion for very small kza. Since η is almost independent of the ionization degree, the
ratio τD/P in the region of very small kza slightly depends on the value of µ̃f .

Finally, we compare the full numerical solution with that obtained by solving the
analytical dispersion relation in the TB approximation (Eq. [6.29]). For the case l/a =
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0.2, and µ̃f = 0.8, we plot by means of symbols in Figure 6.6a the result obtained from
Equation (6.29). We can see a very good agreement between the approximation and
the numerical result (solid line) for kza & 10−4, while both solutions do not agree for
kza . 10−4, which corresponds to the range of kza for which Ohm’s diffusion dominates.
Equation (6.29) was derived by taking into account the effect of resonant absorption
and Cowling’s diffusion, but the influence of Ohm’s diffusion on the damping was not
included. For this reason, the approximate solution does not correctly describe the kink
mode damping for very small kza, which corresponds to extremely long and unrealistic
wavelengths, while it successfully agrees with the full numerical solution for realistic
wavelengths and even larger values of kza.

6.3 Conclusions

In this Chapter, we have studied the role of resonant absorption for the damping
of kink MHD modes in fully ionized and partially ionized filament threads. In the
fully ionized case, we have investigated the resonant coupling of the kink mode to both
Alfvén and slow continuum modes. The obtained damping times are consistent with
those reported by the observations. In addition, we have found that, contrary to the
Alfvén resonance, the slow resonance is very inefficient in damping the kink mode for
typical prominence conditions. Hence, the obtained damping time in the case β 6= 0 is
approximately the same obtained in pressure-less conditions (e.g., Ruderman & Roberts
2002; Goossens et al. 2002; Arregui et al. 2008) and the effect of the slow resonance is
not relevant.

Subsequently, we have assessed the combined effect of both resonant absorption and
partial ionization on the kink mode damping in a partially ionized filament thread.
Focusing on the results within the observationally relevant range of kza, we have found
that resonant absorption entirely dominates the kink mode damping, with τD/P in
agreement with the value in the fully ionized case. None of the dissipative effects caused
and/or enhanced by partial ionization (i.e., Ohm’s, Cowling’s, and Hall’s diffusion) is of
special relevance in the observationally important range of wavenumbers. The plasma
partial ionization does not affect the mechanism of resonant absorption. The present
results reinforce resonant absorption as probably the best candidate for the damping of
filament thread transverse oscillations.
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7
Damping of Kink Modes in a Longitudinally
Inhomogeneous Prominence Fine Structure∗

Early low-resolution observations (e.g., Simon et al. 1986; Demoulin et al. 1987;
Engvold et al. 1987) and theoretical models (e.g., Ballester & Priest 1989; Schmieder
1992; Rempel et al. 1999), suggested that the dense and cool prominence plasma which
forms the fine structure only occupies a part of a much larger magnetic flux tube, while
the rest of the magnetic tube is filled with coronal plasma. This idea is also supported
by more recent high-resolution observations (e.g., Okamoto et al. 2007; Lin et al. 2007,
2008). In the previous Chapters of this Thesis, we have neglected the variation of the
plasma physical conditions along the magnetic tube. This assumption was adopted in
order to simplify matters, allowing us to work both analytically and numerically on the
problem of the damping of the oscillations. Strictly speaking, this approximation is
applicable to waves travelling along a thread and whose wavelength is short compared
to the thread length. Here, our aim is to improve the model and to take into account
the longitudinal inhomogeneity of the fine structure. Hence, we extend the studies of
Chapter 6 about the damping of kink modes by resonant absorption and Cowling’s
diffusion in a longitudinally homogeneous magnetic tube to the case of a magnetic
cylinder only partially filled with the prominence material. This configuration applies
to standing waves in a prominence thread.

Section 7.1 contains a description of the model and the mathematical method. The
dispersion relation of the transverse kink modes supported by the model is obtained in
the thin tube case, and analytical approximations to the frequency and the damping
ratio are obtained (Sec. 7.2). A parametric study of the solutions of the dispersion
relation in investigated in Section 7.3, while the conclusions of this Chapter are given
in Section 7.4.

7.1 Model and basic equations

7.1.1 Equilibrium configuration

The model is schematically plotted in Figure 7.1. We consider a straight and cylindri-
cal flux tube of length L and radius a, whose ends are fixed at two rigid walls representing
the solar photosphere. The magnetic tube is only partially filled with the cool and dense
prominence material. The magnetic tube is composed of a central and dense region of

∗This Chapter is based on the results of R. Soler, R. Oliver, & J. L. Ballester 2010, in preparation
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Figure 7.1: Sketch of the filament thread model considered in this Chapter.

length Lf with prominence-like conditions and representing the prominence fibril, sur-
rounded by two much less dense zones representing the evacuated part of the flux tube.
For simplicity, both the dense and the evacuated (i.e., coronal) part are taken homoge-
neous, with uniform densities ρf and ρe, respectively. The external, coronal medium has
density ρc, which is also homogeneous. Subscripts f, e, and c denote the dense (fibril)
part, the evacuated region, and the corona, respectively. We assume that the evacuated
part of the tube has a density similar to the coronal one, so ρe/ρc ≈ 1. On the contrary,
the density contrast in the dense part is ρf/ρc = 200. In the dense region, we include
a transversely inhomogeneous transitional layer of thickness l, that continuously con-
nects the internal region to the external region. A sinusoidal variation of the density is
considered in the transitional layer (Eq. [6.1]). For our subsequent analysis, we assume
that this transitional layer is thin in comparison to the tube radius, so that the ratio
l/a is small. Finally, the magnetic field is taken homogeneous and orientated along the
z-direction, namely ~B0 = B0êz, with B0 = 5 G everywhere. Thus, for Lf = L, i.e, a
fully filled tube, the model reduces to the configuration studied in Chapter 6.

The dense plasma is assumed partially ionized with an arbitrary ionization degree µ̃f .
Both the evacuated part and the corona are taken fully ionized, thus µ̃e = µ̃c = 0.5. We
consider the effect of Cowling’s diffusion in the generalized induction equation (Eq. [5.2]).
Provided that ρf , ρe, and ρc are constants, the corresponding Cowling’s diffusivities,
namely ηCf , ηCe, and ηCc, respectively, are also constants. Since both the corona and
the evacuated region are fully ionized and much less dense than the filament plasma, we
have ηCc � ηCf and ηCe � ηCf . For the sake of simplicity, we set ηCe = ηCc = 0, and the
effect of Cowling’s diffusion is only considered in the dense and partially ionized part of
the thread. If Cowling’s diffusion were considered in the evacuated and coronal regions,
it would have a very minor influence since Cowling’s diffusivities in these regions are
much smaller than that in the dense part of the flux tube.

7.1.2 Mathematical method

The general investigation of the ideal MHD transverse oscillations supported by our
equilibrium in the case l/a = 0 and for β = 0 was performed by Dı́az et al. (2002). These
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authors obtained the oscillatory frequencies and eigenfunctions for arbitrary values of
L, Lf , and a. Here, we could follow a treatment similar to that of Dı́az et al. (2002), but
this requires a significant mathematical effort that is beyond the purpose of the present
Chapter. Instead, we consider the much simpler approach introduced by Dymova &
Ruderman (2005), who studied the same configuration but in the thin tube limit, i.e.,
for a/L� 1 and a/Lf � 1. Note that these two conditions are equivalent to requesting
the tube radius being much smaller than both the total tube length and the fibril length.
The typical observed transverse width of filament threads is around 100 km, whereas
their length is between one and two orders of magnitude larger (see, e.g., Lin 2004). So,
the condition a/Lf � 1 is easily satisfied. In addition, L > Lf and so the condition
a/L� 1 is also satisfied in prominence fine structures. One can relate L to the typical
spatial scale in prominences and filaments, i.e., L ∼ 100,000 km (see details in Table 1.2).

Assuming the β = 0 approximation and a time dependence of the form exp (−iωt),
we can define a modified Alfvén speed squared as Γ2

A = v2
A − iωηC, which contains the

effect of Cowling’s diffusion (see details in Sec. 5.2.1). Thus, the relevant equations for
our investigation are

ρ0
∂~v1
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)
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�� ��7.1

∂ ~B1

∂t
=

Γ2
A

v2
A

∇×
(
~v1 × ~B0

)
.

�� ��7.2

Equations (7.1) and (7.2) can be combined to arrive at the following equation for the
total pressure perturbation, pT,

∂2pT

∂t2
− Γ2

A∇2pT = 0,
�� ��7.3

along with an equation relating the total pressure and radial velocity perturbations as
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Now, we write all perturbations proportional to exp (−iωt+mϕ), and Equation (7.3)
becomes
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Following Dymova & Ruderman (2005), we can perform a different scaling of Equa-
tion (7.5) inside the tube and in the corona. For perturbations inside the tube, the char-
acteristic scale in the r-direction is a, while the characteristic scale in the z-direction is
L. Since a/L� 1, the term with the longitudinal derivative and the term proportional
to ω2 are much smaller than the other terms. In such a case, Equation (7.5) inside the
tube reduces to

∂

∂r

(
r
∂pTi

∂r

)
− m2

r2
pTi ≈ 0,

�� ��7.6

with i = f or e. The solution of Equation (7.6) for regular perturbations at r = 0 is

pTi ≈ Ai (z)
(r
a

)m
,

�� ��7.7
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where Ai (z) is an arbitrary function of z.
On the other hand, the characteristic scale of perturbations outside the tube, i.e., in

the corona, is L in both the r- and z-directions, so that no terms can be neglected in
Equation (7.5). However, we can express the total pressure perturbation in the corona
as pTc = Ac (z)F (r) and use the technique of separation of variables to obtain the
following expressions

d2F

dr2
+

1
r

dF
dr

−
(
k2

n +
m2

r2

)
F = 0,

�� ��7.8

and
d2Ac

dz2
+
ω2

v2
Ac

Ac = −k2
nAc, with Ac = 0 at z = ±L/2,

�� ��7.9

where kn is a separation constant, with n accounting for the different radial harmonics.
In Equation (7.9) we have taken into account that the Cowling’s diffusivity is neglected
in the corona, so Γ2

Ac = v2
Ac. Equation (7.8) is the modified Bessel Equation. Here, we

only consider trapped modes and assume k2
n > 01. Then, the solution of Equation (7.8)

is F (r) = Km (knr), whose asymptotic expansion near the tube boundary allows us to
express the total pressure perturbation in the corona as

pTc ≈ Ac (z)
(a
r

)m
.

�� ��7.10

Boundary conditions

Let us consider now appropriate boundary conditions at the cylinder edge, i.e., r = a.
In the evacuated part of the tube, we assume ρe = ρc and so we do not take the
transitional layer into account. Hence, the boundary conditions are those given by
Dymova & Ruderman (2005) in their Equation (4), namely

[[pT]] = 0, [[vr]] = 0, at r = a for |z| > Lf/2,
�� ��7.11

where [[X]] stands for the jump of the quantity X.
On the other hand, in the dense part of the tube we consider the effect of resonant

absorption in the transitional layer. We follow the treatment by Andries et al. (2005),
who generalize the concept of the jump conditions at the resonance position of Sakurai
et al. (1991a) to the case of a longitudinally inhomogeneous tube. Andries et al. (2005)
combined the jump conditions with the thin boundary approximation to obtain analyt-
ical expressions of the dispersion relation and the frequency for longitudinally stratified
tubes. The accuracy of this analytical method was numerically verified by Arregui et al.
(2005), who found a good agreement between the expressions of Andries et al. (2005)
and their numerical computations. In the thin tube approximation, Dymova & Ruder-
man (2006) provide equivalent expressions for the jump conditions that can be applied
to our perturbations. In our notation, the jump conditions for the total pressure and
the radial velocity perturbations provided by Dymova & Ruderman (2006) are

[[pT]] = 0, [[vr]] = −πωR
m2/a2

|ρ0∆n|rA

pT, at r = rA for |z| < Lf/2,
�� ��7.12

1This condition may not be satisfied for high harmonics but we need not worry about this issue since
here we focus our investigation on the fundamental mode, which is non-leaky in the present configuration.
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with ∆n = d
dr

(
ω2

R − λ2
n

)
, where λ2

n are the eigenvalues of the Sturm-Liouville problem

v2
A (r)

d2G
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= −λ2

n (r)G,
�� ��7.13

with appropriate boundary conditions for G at z = ±Lf/2. Equation (7.13) describes
the spectrum of Alfvén modes, with λn (r) the corresponding frequencies of the Alfvén
continuum. In general, it is not straight-forward to deduce these boundary conditions
because they are given by the continuity of G at z = ±Lf/2, hence the value of G at
z = ±Lf/2 is also determined by the properties of the evacuated region. In a longitudi-
nally homogeneous tube, i.e., for Lf = L and with the Alfvén speed depending on the
radial direction only, we simply have that the boundary conditions are G (±L/2) = 0
and obtain λn (r) ≡ ωA (r) = nπ

L vA (r). In such a case, the jump conditions of Equa-
tion (7.12) reduce to those provided by Sakurai et al. (1991a).

For our subsequent analysis, we do not need the precise value of λn (r) but only its
functional dependence on the radial direction. For the given sinusoidal density profile,
we can express the Alfvén speed squared in the transitional layer as v2

A (r) = v2
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Hence, Equation (7.13) is rewritten as

v2
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n (r) f (r)G.
�� ��7.15

With no loss of generality, we can assume that G is only a function of z, i.e., the different
magnetic surfaces are not coupled to each other. So, according to Equation (7.15), the
quantity λ2

n (r) f (r) corresponds to the Alfvén eigenvalue squared in the dense part of
the tube. Since the dense region is homogeneous, its corresponding Alfvén eigenvalue
does not depend on r, meaning that the radial contributions of λ2

n (r) and f (r) cancel.
Thus, we define λ2

fn ≡ λ2
n (r) f (r), with λfn a constant corresponding to the Alfvén

eigenvalue in the homogeneous dense part of the tube. Therefore, we have
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λ2
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,

�� ��7.16

where the radial dependence of λ2
n (r) comes from the function f (r). With the help

of Equation (7.16), we obtain that ∆n = λ2
n (r) f ′ (r) /f (r), where the prime denotes

a radial derivative. Finally, the factor |ρ0∆n|rA
in the jump condition for the radial

velocity perturbation (Eq. [7.12]) is

|ρ0∆n|rA
= ω2

R |∂rρ0|rA
,

�� ��7.17

where we have used the resonant condition, namely λ2
n (rA) = ω2

R. Note that we still need
the value of rA, which could be computed from the resonant condition if the eigenvalues
λ2

n (r) where a priori known. A reasonable assumption in the TT limit is to consider
rA ≈ a, so that |∂rρ0|rA

≈ π (ρf − ρc) /2l for our sinusoidal profile.
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Solution in the evacuated region

Let us consider first the boundary conditions for the evacuated part (Eq. [7.11]).
The analysis here is identical to that of Dymova & Ruderman (2005). For the condition
on the total pressure perturbation, we obtain Ae (z) = Ac (z) = A (z). Next, we rewrite
Equation (7.4) as

v2
A

∂2vr

∂z2
+ ω2vr = − iω

ρ0

∂pT

∂r
.

�� ��7.18

We evaluate Equation (7.18) for r ≈ a on both sides of the tube boundary. Thus, in the
evacuated part,

v2
Ae

∂2vre

∂z2
+ ω2vre = − iω

ρe

m

a
A (z) , for r / a,

�� ��7.19

whereas in the corona,

v2
Ac

∂2vrc

∂z2
+ ω2vrc =

iω

ρc

m

a
A (z) , for r ' a.

�� ��7.20

According to the boundary condition for vr given by Equation (7.11), vre = vrc. Thus,
we combine Equations (7.19) and (7.20) to find the following two expressions

∂2vr

∂z2
= iω

m

a

µ

B2
0

ρe − ρc

ρe + ρc
A (z) ,

�� ��7.21

vr = −im
a

1
ω

2
ρe − ρc

A (z) ,
�� ��7.22

where we have considered that the magnetic field is homogeneous. Now, we differentiate
Equation (7.22) with respect to z twice and compare the resulting expression with
Equation (7.21). We obtain

d2A (z)
dz2

+
ω2

c2ke

A (z) = 0,
�� ��7.23

with

c2ke ≡
2B2

0

µ (ρe + ρc)
=
ρev

2
Ae + ρcv

2
Ac

ρe + ρc
.

�� ��7.24

The quantity cke corresponds to the kink speed in the evacuated region.
To solve Equation (7.23), we consider the line-tying condition at the photosphere,

i.e., A (±L/2) = 0. Therefore, the solution in the two evacuated zones is

A (z) =


C1 sin

[
ω

cke
(z − L/2)

]
, for z > Lf/2,

C2 sin
[

ω
cke

(z + L/2)
]
, for z < −Lf/2,

�� ��7.25

where C1 and C2 are constants.
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Solution in the dense region

In the dense region, we adopt the thin boundary approach and use the jump condi-
tions given by Equation (7.12) as our boundary conditions. Again, the condition over
the total pressure perturbation gives Af (z) = Ac (z) = A (z). Near the boundary we ex-
press vrc = vrf + δvr, where δvr is the jump of the radial velocity perturbation provided
by Equation (7.12), namely

δvr = −πωR
m2/a2

|ρ0∆n|rA

pT = −π m2/a2

ωR |∂rρ0|rA

pT.
�� ��7.26

As before, we evaluate Equation (7.4) on both sides of the tube boundary and, after
some algebra, we arrive at the following expressions

∂2vrf

∂z2
=
m

a

iω

v2
Ac − Γ2

Af

ρf + ρc

ρfρc
A (z)

+
m2/a2

ωR |∂rρ0|rA

π

v2
Ac − Γ2

Af

[
v2
Ac

d2A (z)
dz2

+ ω2A (z)
]
,

�� ��7.27

vrf = −m
a

i

ω

ρfΓ2
Af + ρcv

2
Ac

ρfρc

(
v2
Ac − Γ2

Af

)A (z)

− π

ω2

Γ2
Af

v2
Ac − Γ2

Af

m2/a2

ωR |∂rρ0|rA

[
v2
Ac

d2A (z)
dz2

+ ω2A (z)
]
.

�� ��7.28

Now, we differentiate Equation (7.28) with respect to z twice and compare the resulting
expression with Equation (7.27), obtaining

d4A (z)
dz4

+
[
ω2

(
Γ2

Af + v2
Ac

Γ2
Afv

2
Ac

)
+
iω

π

ωR |∂rρ0|rA

m/a

(
ρfΓ2

Af + ρcv
2
Ac

ρfρcΓ2
Afv

2
Ac

)]
d2A (z)

dz2

+ ω2

[
ω2

Γ2
Afv

2
Ac

+
iω

π

ωR |∂rρ0|rA

m/a

(
ρf + ρc

ρfρcΓ2
Afv

2
Ac

)]
A (z) = 0.

�� ��7.29

The general Equation (65) of Dymova & Ruderman (2006) and our Equation (7.29)
are equivalent if a constant piecewise density is assumed in the former and Cowling’s
diffusion is omitted in the latter. Equation (7.29) can be solved by taking a solution of
the form exp (ikzz) and obtaining the subsequent forth-order polynomial for kz. Two
independent values of kz are possible, namely kz1 and kz2. Thus, the solution of Equa-
tion (7.29) is

A (z) = D1 exp (ikz1z) +D2 exp (−ikz1z) +D3 exp (ikz2z) +D4 exp (−ikz2z) ,
�� ��7.30

with D1, D2, D3, and D4 constants that are determined by the boundary conditions at
z = ±Lf/2. However, to keep this general analysis implies that the following expressions
are complicated and require an additional mathematical effort, which is beyond the
purpose of the present Chapter. Instead, we choose a more restrictive way to simplify
matters.

For our next analysis, Equation (7.29) is rewritten in a convenient form as

b2

ω2

d4A (z)
dz4

+
d2A (z)

dz2
+
ω2

c̃2kf

A (z) = 0,
�� ��7.31
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where c̃2kf and b2 are defined as

c̃2kf =

ρfΓ
2
Af+ρcv2

Ac
ρf+ρc

− iπω
(
Γ2

Af + v2
Ac

) ( ρfρc

ρf+ρc

)
m/a

ωR|∂rρ0|rA

1− iπω
(

ρfρc

ρf+ρc

)
m/a

ωR|∂rρ0|rA

,
�� ��7.32

b2 = −
iωπΓ2

Afv
2
Ac

(
ρfρc

ρf+ρc

)
m/a

ωR|∂rρ0|rA
ρfΓ

2
Af+ρcv2

Ac
ρf+ρc

− iπω
(
Γ2

Af + v2
Ac

) ( ρfρc

ρf+ρc

)
m/a

ωR|∂rρ0|rA

.
�� ��7.33

Our definition of the modified kink speed, c̃kf , takes into account both the effect of
Cowling’s diffusion (through Γ2

Af) and the effect of resonant absorption. If the terms
related to resonant absorption are omitted, one has b2 = 0 and c̃2kf becomes

c̃2kf =
ρfΓ2

Af + ρcv
2
Ac

ρf + ρc
,

�� ��7.34

which reduces to the ideal kink speed when Cowling’s diffusion is neglected, i.e., Γ2
Af =

v2
Af .

In the case of the fundamental mode, one could assume that, when the terms related
to Cowling’s diffusion and resonant absorption are present, the characteristic scale for the
variations of the eigenfunctions in the z-direction is only slightly modified with respect
to the ideal case without transitional layer. Therefore, a reasonable approximation is
to relate the forth-order derivative of A (z) in Equation (7.31) with the second-order
derivative as follows

d4A (z)
dz4

∼ −K2 d2A (z)
dz2

,
�� ��7.35

where the quantity K plays the role of the longitudinal wavenumber. We can approxi-
mate K by its expression in the ideal case, namely

K2 ≈ ω2

c2kf

,
�� ��7.36

with c2kf the ideal kink speed. Hence, Equation (7.31) becomes

d2A (z)
dz2

+
ω2

c̃2kf

(
1− b2

c2kf

)A (z) ≈ 0,
�� ��7.37

which is formally identical to Equation (7.23). It is important recalling that the approx-
imation of the forth-order z-derivative of A (z) may introduce some uncertainty in the
solutions of Equation (7.37) in comparison with the solutions of the full Equation (7.29).
However, we expect a minor discrepancy in the case of the fundamental mode because
its characteristic scale in the z-direction should not be essentially modified when the
terms related to Cowling’s diffusion and resonant absorption are taken into account in
the equations.
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The solutions of Equation (7.37) can be separated according to their symmetry about
z = 0. Thus,

A (z) =



E1 cos

 ω

c̃kf

r
1− b2

c2
kf

z

 , for even modes,

E2 sin

 ω

c̃kf

r
1− b2

c2
kf

z

 , for odd modes,

if |z| ≤ Lf/2,
�� ��7.38

with E1 and E2 constants.

7.2 Dispersion relation and analytical approximations

Here, we seek a dispersion relation for the fundamental kink mode. This solution
corresponds to the even mode with the lowest frequency. In order to match the solution
in the dense part (Eq. [7.38]) with that in the evacuated regions (Eq. [7.25]), we impose
the boundary conditions

[[A]] = 0,
[[

dA
dz

]]
= 0, at z = ±Lf/2,

�� ��7.39

corresponding to a contact discontinuity (Goedbloed & Poedts 2004). We finally arrive
at the dispersion relation, namely

1

c̃kf

√
1− b2

c2kf

tan

 ω

c̃kf

√
1− b2

c2kf

Lf

2

− 1
cke

cot
[
ω

cke

(
L− Lf

2

)]
= 0.

�� ��7.40

The fundamental kink mode is given by the first root of Equation (7.40). A first-order
Taylor expansion of Equation (7.40) provides us with an approximation to the frequency
as

ω2 ≈ 4
(L− Lf)Lf

c̃2kf

(
1− b2

c2kf

)
.

�� ��7.41

We can extract two main results from Equation (7.41). First of all, Equation (7.41)
only depends on the physical properties of the dense region and the corona through
c̃kf , ckf , and b, and includes no contributions from the evacuated part. And second,
the form of Equation (7.41) is similar to the approximation of the kink mode frequency
in a homogeneous tube, i.e., ω2 ≈ k2

zc
2
kf , where kz is the longitudinal wavenumber.

Thus, it seems that the main differences between the expression for the homogeneous
tube and that for the partially filled tube are that 4/(L − Lf)Lf replaces k2

z , and that
a redefined kink speed has to be taken into account. This suggests that a similar
replacement could be performed in the equations deduced throughout this Thesis to
adapt them to the case of a partially filled thread. This approximation of the frequency
is similar to that obtained by Joarder & Roberts (1992b) for the string modes of their
slab configuration. Note that Equation (7.41) fails to represent the kink mode frequency
in the limits Lf/L ≈ 1 and Lf/L ≈ 0, so one should consider intermediate values of Lf/L
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in Equation (7.41). The correct expressions for the fundamental kink mode frequency
in these limits are

ω =
π

L
c̃kf

√
1− b2

c2kf

, for Lf/L = 1,
�� ��7.42

and
ω =

π

L
cke, for Lf/L = 0.

�� ��7.43

7.2.1 Damping by Cowling’s diffusion

Let us consider the case without transverse transitional layer, i.e., l/a = 0. Then,
c̃kf is given by Equation (7.34) and b2 = 0 since there is no jump of the radial velocity.
Equation (7.41) allows us to obtain the real and imaginary parts of the frequency as

ω = ±

[
ρfv

2
Af + ρcv

2
Ac

ρf + ρc
−
(
ρfηCf

ρf + ρc

)2 1
(L− Lf)Lf

]1/2
2√

(L− Lf)Lf

− i

(
ρfηCf

ρf + ρc

)
2

(L− Lf)Lf
.

�� ��7.44

This last expression is formally identical to Equation (5.43) if the replacement of k2
z by

4/(L − Lf)Lf is done. Note that the second term of the real part of the frequency was
neglected in Equation (5.43). Therefore, we see again that the expression for the homo-
geneous thread can be extended to a partially filled thread by selecting an appropriate
value for the longitudinal wavenumber. By setting the real part of Equation (7.44) equal
to zero, we obtain two critical values of Lf/L as

(Lf/L)±c =
1
2
± 1

2

[
1−

(
2ρf

ρf + ρc

)
η̃2
Cf

]1/2

,
�� ��7.45

with η̃Cf = ηCf/vAfL. Hence, the kink mode only exists for (Lf/L)−c < Lf/L < (Lf/L)+c .
We cast Equation (7.45) for ρf/ρc = 200 and the extreme case of an almost neutral
plasma with µ̃f = 0.99, obtaining (Lf/L)−c ≈ 10−5 and (Lf/L)+c ≈ 0.99999. For smaller
values of µ̃f , (Lf/L)−c decreases and (Lf/L)+c increases. Hence, the presence of these
critical values is irrelevant for realistic values of Lf/L.

For Lf/L far from the critical values, one can drop the second term in the real part
of Equation (7.44). In such a case, the ratio of the damping time to the period is

τD
P
≈ 1

2π

(
ρf + ρc

ρf

)1/2 1
η̃Cf

√
2
(

1− Lf

L

)
Lf

L
.

�� ��7.46

Again, Equation (7.46) is equivalent to Equation (5.44). For ρf/ρc = 200, Lf/L = 0.1,
and L = 107 m, Equation (7.46) gives τD/P ≈ 493 for µ̃f = 0.8, and τD/P ≈ 15 for
µ̃f = 0.99. These results indicate that, as in a homogeneous thread, we need an almost
neutral prominence plasma, i.e., µ̃f ≈ 1, for the damping due to Cowling’s diffusion to be
efficient. Such large values of µ̃f are probably unrealistic in the context of prominences.
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7.2.2 Damping by resonant absorption

Finally, we study here the general case l/a 6= 0. The full expressions of c̃kf and b2

given by Equations (7.32) and (7.33) are taken into account. We express the frequency
as ω = ωR + iωI, and use Equation (7.41) to provide an expression for the ratio ωI/ωR

after neglecting terms of O
(
ω2

I

)
and O

(
ωIL

−2
)
. Thus, we obtain

ωI

ωR
≈ −π

8
(ρf − ρc)

2

(ρf + ρc)
m/a

|∂rρ0|rA

−
(

ρf

ρf + ρc

)1/2 η̃Cf√
2
(
1− Lf

L

)
Lf
L

.
�� ��7.47

The first term on the right-hand side of Equation (7.47) is caused by resonant absorption
and the second term is due to Cowling’s diffusion. The term related to Cowling’s
diffusion was already present in the case l/a = 0. The term related to the damping
by resonant absorption takes the same form as in a homogeneous tube. Note that this
does not mean that the real and imaginary parts of the frequency do not depend on
Lf/L, but both quantities are affected in the same way so that their ratio remains
unaffected. This important result is consistent with the conclusions of Andries et al.
(2005) and Arregui et al. (2005). These authors found that the kink mode damping ratio
of a longitudinally stratified tube with mean density ρmean is the same as that obtained
for a homogeneous tube with density ρmean. Since in our equilibrium the transversely
transitional layer is only present in the dense part of the tube and both the evacuated
zone and the corona have the same density, resonant absorption only takes place in
the dense part of the tube. Therefore, the mean density of the part of the tube where
resonant absorption takes place is, obviously, ρmean = ρf . Hence, according to Andries
et al. (2005) and Arregui et al. (2005), the kink mode damping ratio in our case must
be the same as that of a homogeneous tube with density ρf , as our results indicate.

By assuming a sinusoidal variation for the density in the transitional layer and rA ≈
a, the expression for τD/P according to Equation (7.47) is

τD
P
≈ 2
π

m( la
)(

ρf − ρc

ρf + ρc

)
+ η̃Cf

(
ρf

ρf + ρc

)1/2 4√
2
(
1− Lf

L

)
Lf
L


−1

,
�� ��7.48

which is equivalent to Equation (6.32) for η̃Cc = 0 and kz = 2/
√

(L− Lf)Lf . As obtained
from Equation (6.32), the contribution of resonant absorption to the damping is much
more important than that of Cowling’s diffusion.

7.3 Results

Here, we numerically solve the dispersion relation (Eq. [7.40]) by means of standard
methods and obtain the frequency of the fundamental kink mode for the parameters
ρf/ρc = 200, ρe/ρc = 1, and L = 107 m. We study the dependence of the results with
Lf/L.

First, we plot in Figure 7.2 the A(z) function corresponding to the fundamental sym-
metric kink mode for different values of Lf/L. The A(z) function gives the dependence
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of the perturbations in the longitudinal direction. We see that A(z) is mainly confined
within the dense part of the flux tube and satisfies the line-tying condition at z = ±L/2.
For a homogeneous tube, i.e., Lf = L, the A(z) function becomes a cosine function.

Figure 7.2: A(z) function (in arbitrary units) corresponding to the fundamental kink
mode for Lf/L = 0.1, 0.5, and 0.9. The different line styles are labeled in the Figure.

7.3.1 Case without transverse transitional layer (l/a = 0)

Here, we take into account the case without transverse transitional layer, i.e., l/a = 0,
and so we study the kink mode damping due to Cowling’s diffusion exclusively. Fig-
ure 7.3a displays the dimensionless real part of the frequency, ωRτA, with τA = L/vAf

the Alfvén travel time, as a function of Lf/L for different values of the ionization degree
in the dense region, whereas Figure 7.3b shows the corresponding values of the absolute
value of dimensionless imaginary part of the frequency, |ωIτA|. We see that ωR increases
as Lf decreases, while its value is independent of the ionization degree. On the contrary,
ωI is strongly dependent on the ionization degree, as expected, and also increases as Lf

decreases.

On the other hand, Figure 7.4 displays τD/P versus Lf/L. The obtained values of
τD/P are in agreement with the approximation given by Equation (7.46). The numerical
solution shows little dependence on Lf/L, while the analytical approximation diverges
from the numerical value in the limits of very small and very large Lf/L. As expected,
the analytical expressions derived from Equation (7.41) are not accurate in these limits
of Lf/L. Given the large values of τD/P , we can conclude in this subsection that the
damping due to Cowling’s diffusion in a partially filled flux tube does not increase with
respect to the homogeneous tube case of Chapter 5.
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Figure 7.3: Dimensionless (a) real part and (b) absolute value of the imaginary part of
the frequency of the fundamental kink mode as a function of Lf/L and in the absence of
transverse transitional layer, i.e., l/a = 0. The different line styles represent the results
for µ̃f = 0.5, 0.6, 0.8, and 0.95. The dotted line in panel (a) corresponds to the frequency
of a homogeneous tube with filament conditions, i.e., Lf = L. Note that in panel (a) the
different solutions are superimposed. The different line styles are labeled in the Figure.
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Figure 7.4: τD/P of the fundamental kink mode as a function of Lf/L in the absence
of transverse transitional layer, i.e., l/a = 0, for µ̃f = 0.5, 0.6, 0.8, and 0.95. Symbols
are the approximate solution given by Equation (7.46) for µ̃f = 0.8. The different line
styles are labeled in the Figure.

7.3.2 Case with transverse transitional layer (l/a 6= 0)

Now, we take the case l/a 6= 0 into account. The kink mode is damped by resonant
absorption in the transitional layer. We have computed both the real and imaginary
parts of the frequency of the fundamental kink mode as a function of the different
parameters, namely µ̃f , l/a, and Lf/L. Regarding the real part of the frequency, we find
that its value is almost independent of µ̃f and l/a, while its behavior with Lf/L is the
same plotted in Figure 7.3a. Therefore, the presence of the transverse transitional layer
does not modify the period of the kink oscillations with respect to the case l/a = 0, and
so we do not plot ωR again for the sake of simplicity.

On the other hand, Figure 7.5a shows |ωIτA| for different values of l/a. These
computations correspond to an ionization degree µ̃f = 0.8, but equivalent computations
for other values of µ̃f provide almost identical results because the effect of Cowling’s
diffusion is negligible in comparison to that of resonant absorption. As expected, the
value of |ωIτA| increases with l/a. In order to assess the efficiency of the resonant
damping, Figure 7.5b displays the corresponding values of τD/P . In comparison to the
damping by Cowling’s diffusion (see Fig. 7.4), much smaller values of τD/P are now
obtained. As predicted analytically by Equation (7.48), τD/P is almost independent of
Lf/L. By comparing Figures 7.3a and 7.5a, we see that both the real and imaginary
parts of the frequency have a very similar dependence on Lf/L, so the dependence on
Lf/L is canceled when the damping ratio is computed, such as we mentioned at the end
of Section 7.2.2. In addition, a very good agreement between the numerical result and
the analytical approximation (Eq. [7.48]) is found.

140



7.3. RESULTS

Figure 7.5: (a) Absolute value of the dimensionless imaginary part of the frequency
and (b) τD/P of the fundamental kink mode as a function of Lf/L. The different line
styles represent the results for l/a = 0.05, 0.1, 0.2, and 0.4. The symbols in panel (b)
correspond to the approximate solution given by Equation (7.48) for l/a = 0.2. In all
computations, µ̃f = 0.8.
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Figure 7.6: Sketch of the filament thread model considered in Section 7.3.3.

7.3.3 Effect of the position of the dense part within the flux tube

In this Section we study the effect of the position of the dense region within the
flux tube. The results of the previous Sections correspond to the case in which the
dense region is located at the center of the cylinder. Here, we allow the dense region
to be displaced from the center of the tube. Figure 7.6 shows a sketch of the present
configuration, in which the total length of the magnetic tube and the fibril length are
kept as L and Lf , respectively. In this Figure, the length of the evacuated regions to the
left and right of the fibril are L−e and L+

e , respectively. For given L and Lf , we can write
L+

e = L−L−e −Lf , hence it is enough to select a value for L−e in order to set the length
of both evacuated parts. The allowed values of L−e are in the range 0 ≤ L−e ≤ L − Lf .
For L−e = 0, the dense part is totally displaced to the left-hand side end of the flux tube,
while the contrary occurs for L−e = L−Lf . For L−e = L+

e = 1
2 (L− Lf) the dense region

is located at the center of the tube, i.e., we revert to the configuration studied in the
previous Sections of the present Chapter.

A new dispersion relation including this additional ingredient of the model can be
analytically derived. However, now we cannot separate the solutions according to their
symmetry about z = 0, hence the dispersion relation is more complex than Equa-
tion (7.40). The dispersion relation is
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with h =
√

1− b2

c2kf
. In the case L−e = L+

e and for solutions symmetric about z = 0,

Equation (7.49) reduces to Equation (7.40).
Next, we obtain the lowest frequency solution, equivalent to the fundamental kink
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mode of the case L−e = L+
e . To do so, we numerically solve Equation (7.49) for Lf/L =

0.2 and µ̃f = 0.8, and study the dependence of the result with L−e /L. First, we display
in Figure 7.7 the A(z) function for different values of L−e /L. Since the oscillation is
dominated by the physical properties of the dense region, we see that the maximum of
A(z) is always in the dense part, regardless of its location within the flux tube.

Figure 7.7: A(z) function (in arbitrary units) corresponding to the fundamental kink
mode for Lf/L = 0.2. The different line styles represent L−e /L = 0.2, 0.4, and 0.7. The
thick part of the lines corresponds to the location of the fibril within the magnetic tube.

Figure 7.8 displays both the real and imaginary parts of the frequency as a function
of L−e /L. We obtain that the minimum of ωR takes place when the dense part is
centered within the flux tube, i.e., for L−e /L = 1

2 (1− Lf/L) = 0.4, and ωR grows
symmetrically around L−e /L = 0.4 when L−e /L increases or decreases. The dependence
of ωI on L−e /L shows the same behavior than ωR. Such as happens with the dependence
on Lf/L (Fig. 7.5), the dependence on L−e /L also cancels out when the damping ratio
is computed (see Fig. 7.9). Hence, in our model the value of τD/P is independent of
both Lf/L and L−e /L. We can also see in Figure 7.9 that the approximate τD/P given
by Equation (7.48) remains valid when the fibril part is not located at the center of the
magnetic tube.

7.4 Conclusion

We have adopted a simplified model made of a magnetic cylinder with a dense region
with prominence-like conditions, surrounded by two much less dense zones with coronal
properties representing the evacuated part of the flux tube. For simplicity, the densities
inside these regions are homogeneous (but different), and the thin tube and β = 0
approximations have been applied following the treatment by Dymova & Ruderman
(2005, 2006).
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Figure 7.8: Dimensionless (a) real part and (b) absolute value of the imaginary part of
the frequency of the fundamental kink mode as a function of L−e /L, with Lf/L = 0.2
and µ̃f = 0.8. The different line styles represent the results for l/a = 0.05, 0.1, 0.2, and
0.4. Note that in panel (a) the different solutions are superimposed.
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Figure 7.9: τD/P of the fundamental kink mode as a function of L−e /L, with Lf/L = 0.2
and µ̃f = 0.8. The different line styles represent the results for l/a = 0.05, 0.1, 0.2, and
0.4. The symbols correspond to the approximate solution given by Equation (7.48) for
l/a = 0.2.

We have found that the kink mode behavior is mainly governed by the physical prop-
erties of the dense, prominence region. The analytical expressions of τD/P obtained for
a homogeneous thread can be easily generalized to a partially filled flux tube by selecting
appropriate values of the longitudinal wavenumber in the formulas of the homogeneous
case, given in Chapter 6. In particular, this equivalent longitudinal wavenumber, kz,
depends on the lengths of both the dense region, Lf , and the whole flux tube, L, as
kz = 2/

√
(L− Lf)Lf . In addition, we have obtained that the damping ratio by resonant

absorption is independent of the ratios Lf/L and L−e /L, which account for the length
of the dense region and its position within the magnetic tube, respectively. This result
might have important repercussions from a seismological point of view.

The present investigation should be improved in the future by considering a contin-
uous variation of the density in the longitudinal direction as in Andries et al. (2005)
and Arregui et al. (2005), instead of our constant piecewise function. Both the period
and the damping time may depend on the chosen density profile, but if the transition
between the denser part and the evacuated part is narrow, we expect to obtain a small
correction to our present results. In addition, one could go beyond the thin tube approx-
imation by using the more general analytical approach of Dı́az et al. (2002) or finding
the eigenmodes numerically. Moreover, the study of the time-dependent problem by
means of both linear and non-linear numerical simulations is also of interest.
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Collective Oscillations of
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8
Collective Magnetohydrodynamic Waves in Two
Cylindrical Filament Threads with Mass Flows∗

In the previous Chapters, we have investigated the individual oscillations of promi-
nence and filament fine structures. Some observations (e.g., Yi et al. 1991; Lin et al.
2007; Schmieder et al. 2010) suggest that groups of near threads might oscillate coher-
ently, i.e., in phase. Collective oscillations have also been reported in the case of coronal
loops (Schrijver & Brown 2000; Verwichte et al. 2004) and in global motions of two
spines within the same prominence (Ning et al. 2009b). Therefore, the investigation of
collective oscillations of groups of threads seems the obvious next step.

As we commented in the Introduction (Chap. 1), a number of works have studied
the phenomenon of collective thread oscillations in Cartesian geometry (Dı́az et al. 2005;
Dı́az & Roberts 2006). In cylindrical geometry, the studies by Luna et al. (2009), who
used the analytical T-matrix theory of scattering (e.g., Twersky 1952; Waterman 1969;
Bogdan & Zweibel 1987; Keppens et al. 1994) in the context of pressure-less coronal
loops, can also be applied to filament threads. Here, our purpose is to take the method of
Luna et al. (2009) into account and to apply it to the context of prominence oscillations.
In addition, we extend the formalism of Luna et al. (2009) by considering the case β 6= 0
and by allowing the presence of flows in the equilibrium. In this Chapter, we present the
mathematical method and investigate the ideal MHD modes supported by two filament
threads. The study of the damping of these collective modes is relegated to Chapter 9.

Section 8.1 contains a description of the model configuration and the mathematical
method. The collective MHD modes of two identical threads are investigated in Sec-
tion 8.2. In particular, we assess the effect of mass flows along the threads (Sec. 8.2.2).
Finally, we extend our investigation to the case of non-identical threads in Section 8.3.

8.1 Model and theory

8.1.1 Equilibrium configuration

Our equilibrium system is made of an arbitrary configuration of N homogeneous and
unlimited parallel cylinders, representing prominence threads, embedded in an also ho-
mogeneous and unbounded coronal medium. Each thread has its own radius, aj, effective
temperature, T̃j, and density, ρj, where the subscript j = 1, 2, . . . , N refers to a particular
thread. On the other hand, the coronal effective temperature and density are T̃c and

∗This Chapter is based on the results of R. Soler, R. Oliver, & J. L. Ballester 2009, Propagation of
Nonadiabatic Magnetoacoustic Waves in a Threaded Prominence With Mass Flows, ApJ, 693, 1601.
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ρc, respectively. Both the prominence plasma and the coronal medium are assumed to
be fully ionized. The cylinder axes are parallel to the z-direction. The magnetic field is
uniform and also orientated along the z-direction, ~Bj = Bjêz being the magnetic field in
the j-th thread, and ~Bc = Bcêz in the coronal medium. In addition, steady mass flows
are assumed along magnetic field lines, with flow velocities and directions that can be
different within the threads and in the corona. Thus, ~vj = vjêz represents the mass flow
in the j-th thread, whereas ~vc = vcêz corresponds to the coronal flow. For simplicity, in
all the following expressions a subscript 0 indicates local equilibrium values, while sub-
scripts j or c denote quantities explicitly computed in the j-th thread or in the corona,
respectively.

8.1.2 Mathematical method

We consider linear and adiabatic perturbations from the equilibrium state. Such as
shown in Section 4.1.2, magnetoacoustic waves are governed by

Υ2
[
Υ2 −

(
c2s + v2

A

)
∇2
]
∆ + c2sv

2
A

∂2

∂z2
∇2∆ = 0,

�� ��8.1

where ∆ = ∇ · ~v1 is the divergence of the velocity perturbation, and Υ = ∂
∂t + v0

∂
∂z

is the Doppler-shifted time operator. The quantities in Equation (8.1), as well as in
the following expressions, are defined in previous Chapters. Considering cylindrical
coordinates, namely r, ϕ, and z for the radial, azimuthal, and longitudinal coordinates,
respectively, we write ∆ in the following form,

∆ = ψ (r, ϕ) exp (ikzz − iωt) ,
�� ��8.2

where the function ψ (r, ϕ) contains the full radial and azimuthal dependence. By insert-
ing this last expression into Equation (8.1), a Helmholtz Equation is obtained, namely

∇2
rϕψ (r, ϕ) +m2

0 ψ (r, ϕ) = 0,
�� ��8.3

where ∇2
rϕ is the Laplacian operator for the r and ϕ coordinates, and m2

0 is the radial
wavenumber defined as

m2
0 =

(
Ω2

0 − k2
zv

2
A

) (
Ω2

0 − k2
zc

2
s

)(
v2
A + c2s

) (
Ω2

0 − k2
zc

2
T

) ,
�� ��8.4

with Ω0 = ω − kzv0 the Doppler-shifted frequency. We investigate non-leaky modes,
which are given by m2

c < 0. We impose no restriction on the wave character within the
threads.

To solve Equation (8.3), we consider the technique developed by Luna et al. (2009)
based on the study of normal modes of an arbitrary configuration of magnetic cylinders
by means of the T-matrix theory of scattering. An alternative approach for a system
of two cylinders was adopted by Van Doorsselaere et al. (2008), who used bicylindrical
coordinates and the thin tube approximation to obtain an analytical dispersion relation.
Here, we adopt the more general T-matrix theory of Luna et al. (2009), allowing us to
obtain the normal mode frequencies of systems of N cylinders with arbitrary radii. The
novelty with respect to the work of Luna et al. (2009) is that the method is applied here
to solve a Helmholtz equation for the divergence of the velocity perturbation, whereas
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Luna et al. (2009) considered an equation for the total pressure perturbation in the β = 0
approximation (their Eq. [1]). The present approach allows us to generalize the results
of Luna et al. (2009) to the β 6= 0 case, and therefore slow modes are also described.
Mass flows are also included in our formalism. However, the rest of the technique is
absolutely equivalent to that of Luna et al. (2009), and the reader is referred to their
work for an in-depth explanation of the mathematical technique (see also an equivalent
formalism in, e.g., Bogdan & Cattaneo 1989). We give a summary of the method next.

The key point of the T-matrix theory of scattering is that the solution of Equa-
tion (8.3) is decomposed in several fields with different physical meanings. Following
Luna et al. (2009), the internal or transmitted ψ (r, ϕ) field of the j-th thread is

ψj
int(r, ϕ) =

∞∑
m=−∞

Aj
mJm (mj|~r − ~rj|) eimϕj ,

�� ��8.5

where m is the (integer) azimuthal wavenumber, ~rj and ϕj are the radial vector and the
azimuthal angle corresponding to the position of the j-th thread center with respect to
the origin of coordinates, respectively, Aj

m are constants accounting for the contribution
of each multipole m, and Jm is the Bessel function of the first kind of order m.

On the other hand, the solution in the external medium in more difficult to handle.
The external field related to the j-th thread can be generally expressed as

ψj
ext(r, ϕ) =

∞∑
m=−∞

ψj
m(r, ϕ),

�� ��8.6

with
ψj

m(r, ϕ) = αj
1mH

(1)
m (mc|~r − ~rj|) eimϕj + αj

2mH
(2)
m (mc|~r − ~rj|) eimϕj ,

�� ��8.7

where the first term of Equation (8.7) corresponds to outgoing waves and the second
term to incoming waves, with H

(1)
m and H

(2)
m the usual Hankel functions, and αj

1m and
αj

2m constants. We must now note that
∑

j ψ
j
ext(r, ϕ) does not correspond to the total net

external solution since, for example, the outgoing wave of a particular thread contributes
to the incoming waves of the other threads. Instead, Bogdan & Cattaneo (1989) express
the total net external field as

ψext(r, ϕ) =
N∑
j

ψj
scat(r, ϕ),

�� ��8.8

with ψj
scat the scattered field generated by the j-th thread. Thus, we can define the

exciting field of the j-th thread as the difference between the total field and its own
scattered contribution, i.e., the sum of the scattered field of the other threads, namely

ψj
excit(r, ϕ) = ψext(r, ϕ)− ψj

scat(r, ϕ) =
∑
n 6=j

ψn
scat(r, ϕ).

�� ��8.9

While only the scattered fields contribute to the net solution of Equation (8.3), it is
conceptually useful to understand the exciting fields as the cross-talk mechanism between
the different flux tubes. Waterman (1969) introduces the T-matrix operator of the j-th
thread, Tj, which linearly relates both its scattered and exciting fields as

ψj
scat(r, ϕ) = Tjψj

excit(r, ϕ).
�� ��8.10
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Bogdan & Zweibel (1987) show that, for cylindrical scatterers, the T-matrix is diagonal,
while Keppens et al. (1994) give an expression for its elements, namely

T j
mm =

1
2

(
1− αj

1m

αj
2m

)
,

�� ��8.11

with αj
1m and αj

2m the same constants of Equation (8.7). With the help of these last
definitions, and after some algebraic manipulations involving Bessel functions properties,
we rewrite Equation (8.7) as

ψj
m(r, ϕ) = 2αj

2mJm (mc|~r − ~rj|) eimϕj − 2αj
2mT

j
mmH

(1)
m (mc|~r − ~rj|) eimϕj ,

�� ��8.12

from which we can identify both the exciting and scattered fields of the j-th thread,
namely

ψj
excit(r, ϕ) =

∞∑
m=−∞

2αj
2mJm (mc|~r − ~rj|) eimϕj ,

�� ��8.13

ψj
scat(r, ϕ) = −

∞∑
m=−∞

2αj
2mT

j
mmH

(1)
m (mc|~r − ~rj|) eimϕj .

�� ��8.14

According to Equation (8.8), the total net external field can be finally written as

ψext(r, ϕ) = −
N∑
j

∞∑
m=−∞

2αj
2mT

j
mmH

(1)
m (mc|~r − ~rj|) eimϕj .

�� ��8.15

Equations (8.5) and (8.15) allow us to construct the spatial distribution of ∆. Sub-
sequently, the rest of perturbations can be obtained. Finally, we obtain from Equa-
tion (8.9) that the constants αj

2,m form a homogeneous system of linear algebraic equa-
tions, namely

αj
2m+

∑
k6=j

∞∑
n=−∞

T k
nnα

k
2nH

(1)
n−m (mc|~rj − ~rk|) ei(n−m)ϕjk = 0, for −∞ < m <∞.

�� ��8.16

Once the sums in both integers m and n are truncated to a finite number of terms,
the non-trivial, i.e., non-zero, solution of the system given by Equation (8.16) provides
us with a dispersion relation for the oscillatory frequency, ω, which is enclosed in the
definitions of mj and mc. The dispersion relation is a very transcendental expression,
which we solve by standard numerical procedures. To make sure that the number of
terms considered in Equation (8.16) is large enough, i.e., that the truncation values of
m and n are large enough, we increase the number of terms until we check that a good
convergence of the frequency is obtained.

The main difference between our application and that of Luna et al. (2009) is in the
definition of the T-matrix elements. These elements are obtained by imposing appropri-
ate boundary conditions at the edge of the threads, i.e., at |~r−~rj| = aj. In our case, these
boundary conditions are the continuity of both the total pressure perturbation, pT1 , and
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the Lagrangian radial displacement, ξr = ivr/Ω0. Expressions for these quantities as
functions of ∆ and its derivative are

pT1 = −iρ0
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2
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) (
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)
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0m
2
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�� ��8.17

ξr = −i
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2
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)
Ω3
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2
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∂∆
∂r

.
�� ��8.18

Thus, in our case the T -matrix elements are
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�� ��8.19

where the prime denotes the derivative with respect to the argument of the function.
Note that the denominator of T j

mm vanishes at the normal mode frequencies of each
individual thread. This can be easily checked by comparing the denominator of Equa-
tion (8.19) with the dispersion relation of an isolated thread (see Eq. [3.18]) in which
modified Bessel functions are used instead of Hankel functions. The equivalence between
both kinds of functions is given in Abramowitz & Stegun (1972).

8.2 Collective modes in two identical filament threads

We apply the method to a configuration of two threads (see Fig. 8.1). We use
subscripts 1 and 2 to denote the physical conditions of thread 1, namely T1, ρ1, and
a1 for the temperature, density, and radius of thread 1, respectively, and T2, ρ2, and
a2 the equivalent quantities of the thread 2. The distance between centers is d and
the magnetic field strength is B0 everywhere. The flow velocity inside the cylinders is
denoted by v1 and v2, respectively, whereas the flow velocity in the coronal medium is
vc.

In this Section, we consider identical threads. We take T̃1 = T̃2 = T̃f = 104 K
and ρ1 = ρ2 = ρf = 5 × 10−11 kg m−3, while the coronal effective temperature and
density are T̃c = 2 × 106 K and ρc = 2.5 × 10−13 kg m−3, respectively. Their radii are
a1 = a2 = a = 100 km, and the magnetic field strength is B0 = 5 G. With no loss of
generality, we assume no flow in the external medium, i.e., vc = 0.

8.2.1 Results in the absence of flows

First, we study the normal modes in the absence of flows, i.e., v1 = v2 = 0. We fix
the longitudinal wavenumber to kza = 10−2 and the distance between threads to d = 4a.
We reobtain the four kink modes described by Luna et al. (2008, 2009) in the β = 0 case,
i.e., the Sx, Ax, Sy, and Ay modes, where S or A denote symmetry or antisymmetry of
the total pressure perturbation with respect to the yz-plane, and the subscripts refer to
the main direction of polarization of motions. Note that in our configuration, the x-axis
connects the centers of the cylinders (see Fig. 8.1). These four kink modes are mainly
governed by multipoles with |m| = 1. It is worth mentioning that an infinite number of
other solutions related to larger |m|, i.e., fluting-like modes, are also present. Moreover,

153



CHAPTER 8. COLLECTIVE MHD WAVES IN TWO FLOWING THREADS

Figure 8.1: Sketch of the configuration of two parallel cylindrical filament threads.

two solutions with m = 0 as their dominant multipole, i.e., sausage-like modes, exist,
but they are leaky modes for small values of kza. We focus our investigation on the four
kink solutions described before.

In addition, we also find two more fundamental collective wave modes (one symmetric
and one antisymmetric) mainly polarized along the z-direction, which we call Sz and
Az modes following the notation of Luna et al. (2008). These new solutions correspond
to slow modes, which are absent in the investigations of Luna et al. (2008, 2009) due to
their β = 0 approximation. The Sz and Az solutions have sausage-like properties, i.e.,
their dominant multipole is m = 0. An infinite number of slow modes, mainly governed
by larger values of |m|, are also found, but we restrict ourselves to the fundamental Sz

and Az modes.
The total pressure perturbation field, pT1 , and the transverse Lagrangian displace-

ment vector-field, ~ξ⊥, corresponding to the six fundamental modes are displayed in
Figure 8.2. On the other hand, Figure 8.3 displays a cut of the Cartesian components
of the Lagrangian displacement (ξx, ξy, and ξz) at y = 0, again for these six solutions.
One can see in Figure 8.3 that the amplitude of the longitudinal, i.e., magnetic field
aligned, Lagrangian displacement, ξz, of the Sz and Az modes is much larger than the
amplitude of transverse displacements, ξx and ξy, such as corresponds to slow modes in
β < 1 homogeneous media, while the contrary occurs for the Sx, Ax, Sy, and Ay kink
solutions.

Such as stated by Luna et al. (2009), a collective wave mode is the result of the
coupling between individual modes. So the reader must be aware that here we indis-
tinctly use both expressions, i.e., collective modes and coupled modes, to refer to wave
solutions whose perturbations have significant amplitudes in both threads.

Dependence on the distance between threads

Figure 8.4a displays the ratio of the frequency of the four kink solutions to the
frequency of the individual kink mode, ωk, computed from the dispersion relation of an
isolated cylinder (Eq. [3.18]), as a function of the distance between the center of cylinders,
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Figure 8.2: Total pressure perturbation field (contour plot in arbitrary units) and trans-
verse Lagrangian displacement (arrows) plotted in the xy-plane corresponding to the
wave modes (a) Sx, (b) Ax, (c) Sy, (d) Ay, (e) Sz, and (f) Az in the absence of flows
and for d = 4a and kza = 10−2. The dotted circles denote the location of the undisturbed
threads.
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Figure 8.3: Cut at y = 0, z = 0 of the Cartesian components of the Lagrangian dis-
placement ξx (solid), ξy (dotted), and ξz (dashed) corresponding to the wave modes (a)
Sx, (b) Ax, (c) Sy, (d) Ay, (e) Sz, and (f) Az in the absence of flows and for d = 4a
and kza = 10−2. The shaded zones denote the location of the undisturbed threads.
Arbitrary units have been used
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Figure 8.4: a) Ratio of the frequency of the collective kink modes to the individual
kink mode frequency in the case of identical threads. (b) Ratio of the frequency of the
collective slow modes to the individual slow mode frequency in the case of identical
threads. In both cases kza = 10−2. The meaning of the different lines is indicated
within the Figure.

157



CHAPTER 8. COLLECTIVE MHD WAVES IN TWO FLOWING THREADS

d. This Figure is equivalent to Figure 3 of Luna et al. (2008) and, in agreement with
them, one can see that the smaller the distance between centers, the larger the interaction
between threads and so the larger the separation between frequencies. The frequency
of the collective kink modes is almost identical to the individual kink frequency for a
distance between threads larger than 6 or 7 radii. For larger distances, the interaction
between threads is much weaker and we expect oscillations to be almost individual.
The collective behavior of oscillations is therefore stronger for smaller distances, as
expected. High-resolution observations (e.g., Lin et al. 2007, 2008, 2009) indicate that
the separation between neighboring threads is usually of the order of the thread widths.
For this reason, we consider hereafter small, realistic distances in order to study the
collective behavior of oscillations.

In addition, we see that the kink modes appear in pairs, i.e., the Sx and Ay solutions
have an almost identical frequency, and the same applies to the Ax and Sy solutions.
Van Doorsselaere et al. (2008) showed that for thin tubes (TT), i.e., kza� 1, only two
kink modes are present, which were called low- and high-frequency modes, respectively.
Van Doorsselaere et al. (2008) give an expression for the frequency of their low- and
high-frequency kink modes, which in our notation is

ω2
± =

ω2
k

1∓
(

ρf−ρc

ρf+ρc

)
e−2arccosh( d

2a)
,

�� ��8.20

where ω+ corresponds to the high-frequency solution and ω− to the low-frequency mode.
An accurate approximation to Equation (8.20) for d/a & 4 is obtained by writing
arccosh

(
d
2a

)
≈ ln

(
d
a

)
. Also note that for typical prominence and coronal densities(

ρf−ρc

ρf+ρc

)
≈ 1. So, one gets

ω2
± ≈

ω2
k

1∓
(

a
d

)2 . �� ��8.21

From Equation (8.21) one clearly see that for d/a→∞, ω± → ωk.
For arbitrary kza, each of the two modes of Van Doorsselaere et al. (2008) splits in

two different solutions. Thus, the low-frequency mode becomes the Sx and Ay modes,
whereas the high-frequency mode corresponds to the Ax and Sy solutions. For kza =
10−2, the frequencies of the two modes of each pair are still almost degenerated, so
Equation (8.20) remains as a good approximation to their frequencies. For the sake
of simplicity, we use the notation of Van Doorsselaere et al. (2008) if the modes are
indiscernible when their frequencies are plotted together for small values of kza.

Regarding slow modes, Figure 8.4b displays the ratio of the frequency of the Sz

and Az solutions to the frequency of the individual slow mode, ωs, also computed from
Equation (3.18). One can see that the frequencies of the Sz and Az modes are almost
identical to the individual slow mode frequency, and so the strength of the interaction
is almost independent of the distance between cylinders. This is consistent with the
fact that transverse motions (responsible for the interaction between threads) are not
significant for slow-like modes in comparison with their longitudinal motions. Therefore,
the Sz and Az modes essentially behave as individual slow modes, contrary to kink
modes, which display a more significant collective behavior.
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8.2.2 Effect of mass flows

Luna et al. (2009) studied the effect of considering different densities in each cylinder
on the collective modes. They concluded that collective motions are only possible in
the case of cylinders with similar densities and so similar individual kink frequencies.
The aim of the present Section is to assess the effect of flows on the behavior of the
previously described collective modes for identical threads. We vary the flow velocities
in both cylinders, namely v1 and v2, between −30 km s−1 and 30 km s−1. This range
corresponds to the typically observed flow velocities in filament threads (e.g., Lin et al.
2003). These flow velocities are below the critical value that determines the apparition of
the Kelvin-Helmholtz instability (see details in Holzwarth et al. 2007, and in Sect. 4.1.4).
In our configuration, a positive flow velocity means that the mass is moving towards the
positive z-direction, whereas the contrary happens for negative flow velocities. From
Chapter 4, we know that the symmetry between waves whose propagation is parallel
(ω > 0) or anti-parallel (ω < 0) with respect to magnetic field lines is broken by the
presence of flows. Hence, we must take into account the direction of wave propagation
in order to perform a correct description of the wave behavior. Following the notation
of Chapter 4, we call forward waves those solutions with ω > 0, while backward waves
are solutions with ω < 0.

We begin this investigation with transverse modes. First, we fix v1 = −20 km s−1

and study the behavior of the oscillatory frequency when v2 varies (see Fig. 8.5). We
restrict ourselves to forward propagation because the following argumentation can be
easily extended to backward waves. We use the notation by Van Doorsselaere et al.
(2004) of low-frequency modes (Sx and Ay) and high-frequency modes (Ax and Sy). To
understand the asymptotic behavior of frequencies in Figure 8.5, we define the following
Doppler-shifted individual kink frequencies as

Ωk1 = ωk − v1kz,
�� ��8.22

Ωk2 = ωk − v2kz.
�� ��8.23

Since v1 is fixed, Ωk1 is a horizontal line in Figure 8.5, whereas Ωk2 is linear in v2.
Three interesting situations have been pointed by means of small letters from a to c
in Figure 8.5. Each of these letters also corresponds to a panel of Figure 8.6 in which
the total pressure perturbation field of the Sx mode is plotted. The results for the
other modes are equivalent. The three different situations are commented in detail next
(remember that in all cases v1 = −20 km s−1 ).

• (a) v2 = 10 km s−1 (v2 > v1). This corresponds to a situation of counter-streaming
flows. From Figure 8.5 we see that the frequency of low-frequency modes is close
to Ωk2, whereas that of high-frequency solutions is near Ωk1. Thus, these solutions
do not interact with each other and low-frequency (high-frequency) solutions are
related to individual oscillations of the second (first) thread. This is verified by
looking at the total pressure perturbation field in Figure 8.6a, corresponding to
the Sx mode, which shows that only the second thread is significantly perturbed.
Therefore, for an external observer this situation corresponds in practice to an
individual thread oscillation.

• (b) v2 = −20 km s−1 (v2 = v1). The flow velocities and their directions are equal
in both threads. In such a situation, low- and high-frequency modes couple. At
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Figure 8.5: Ratio of the frequency of the forward kink modes to the individual kink
frequency, ωk, as a function of v2 for v1 = −20 km s−1. The meaning of the solid and
dashed lines is indicated within the Figure. The dotted lines correspond to the Doppler-
shifted individual kink frequencies of the threads, Ωk1 and Ωk2, respectively, given by
Equations (8.22) and (8.23). The symbols and the small letters refer to particular
situations studied in the text.

Figure 8.6: Total pressure perturbation field (contour plot in arbitrary units) and
transverse Lagrangian displacement (arrows) plotted in the xy-plane corresponding to
the forward Sx mode for each particular situation indicated in Figure 8.5, i.e., (a)
v2 = 10 km s−1, (b) v2 = −20 km s−1, and (c) v2 = −27 km s−1. In all three cases,
v1 = −20 km s−1, d = 4a, and kza = 10−2. The dotted circles denote the location of
the undisturbed threads.
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Figure 8.7: Modulus of the transverse Lagrangian displacement of forward kink modes
at the center of the second thread, |ξ⊥2|, as a function of v2 for v1 = −20 km s−1. The
meaning of the solid and dashed lines is given within the Figure. The dotted line is
the displacement at the center of the first thread, namely |ξ⊥1|, which is normalized to
unity. The symbols and the small letters refer to particular situations studied in the
text.

the coupling, an avoided crossing of the solid and dashed lines is seen in Figure 8.5.
Because of this coupling solutions are related no more to oscillations of an indi-
vidual thread but they are now collective. For this reason, Figure 8.6b shows a
significant pressure perturbation and displacement in both threads.

• (c) v2 = −27 km s−1 (v2 < v1). This case is the opposite one to case (a) and
corresponds again to an individual thread oscillation.

Figure 8.7 displays the amplitude of the transverse Lagrangian displacement at the
center of the second thread, |ξ⊥2| =

√
ξ2x2 + ξ2y2, as a function of v2, for forward kink

waves. The displacement amplitude at the center of the first thread is always normal-
ized to unity. The three previously commented situations have been pointed again in
Figure 8.7. We clearly see that the displacement amplitude is only comparable in both
threads, and so their dynamics is collective, when their flow velocities are similar.

Next we turn our attention to slow modes. The behavior of the Sz and Az modes
with respect to the flow is similar to that of low- and high-frequency kink solutions, so
we comment them in short. Sz and Az solutions can only be considered collective when
the flow velocity is the same in both threads because, in such a case, the Sz and Az

modes couple. If different flows within the threads are considered, the Sz and Az slow
modes lose their collective aspect. Then, the Sz and Az solutions behave like individual
slow modes, and their frequencies are very close to the Doppler-shifted individual slow
frequencies, namely

Ωs1 = ωs − v1kz,
�� ��8.24
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Figure 8.8: Total pressure perturbation field, in arbitrary units, plotted in the xy-plane
corresponding to the forward Az slow mode for v1 − v2 = 10−3 km s−1. The dotted
circles denote the location of the undisturbed threads.

Ωs2 = ωs − v2kz.
�� ��8.25

The coupling between slow modes is much more sensible to the flow velocities in com-
parison with kink modes, and the Sz and Az solutions quickly decouple if v1 and v2
slightly differ. An example of this behavior is seen in Figure 8.8, which displays the
total pressure perturbation field of the Az mode for v1 − v2 = 10−3 km s−1. Although
the difference of the flow velocities is insignificant, the Az mode essentially behaves as
the individual slow mode of the second thread. Equivalently, the Sz solution becomes
the individual slow mode of the first thread for this flow configuration.

The main idea behind these results is that kink or slow wave modes with a collective
appearance, i.e., modes with a similar displacement amplitude within all threads, are
only possible when the Doppler-shifted individual kink (Eqs. [8.22] and [8.23]) or slow
(Eqs. [8.24] and [8.25]) frequencies are similar in both threads. In a system of identical
threads, this can only be achieved by considering the same flow velocities within all
threads, since all of them have the same individual kink and slow frequencies. However,
if threads with different physical properties are considered, i.e., with different individual
frequencies, the coupling may occur for different flow velocities. This is explored in the
next Section.

8.3 Collective modes in two non-identical filament threads

8.3.1 Conditions for collective motions

Now, we consider a system of two non-identical threads. From Section 8.2 we expect
that collective kink motions occur when the Doppler-shifted individual kink frequencies
of both threads coincide. The relation between flow velocities v1 and v2 for which the
coupling takes place can be easily estimated from the next expression

ωk1 − v1kz ≈ ωk2 − v2kz.
�� ��8.26
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Note that, for non-identical threads, the individual kink frequency of each thread is
different, i.e., ωk1 6= ωk2. The relation between flow velocities at the coupling is

v1 − v2 ≈
ωk1 − ωk2

kz
.

�� ��8.27

This last expression can be simplified by considering the kink frequency approximation
in the long-wavelength limit and ρc � ρ1, ρ2, namely

ωkj ≈ ±

√
2

1 + ρc/ρj
vAjkz ≈ ±

√
2 vAjkz,

�� ��8.28

for j = 1, 2, where the + sign is for forward waves and the − sign is for backward waves.
Then, one finally obtains

v1 − v2 ≈ ±
√

2 (vA1 − vA2) ,
�� ��8.29

where the meaning of the + and − signs is the same as before. In the case of identical
threads, vA1 = vA2 and v1 − v2 = 0. Thus the flow velocity must be the same in both
threads to obtain collective motions, as concluded in Section 8.2. An equivalent analysis
can be performed for collective slow modes and one obtains that the flow velocities must
verify

v1 − v2 ≈ ± (cs1 − cs2) .
�� ��8.30

In general, the coupling between slow modes occurs for flow velocities different from
those giving rise to coupling between kink modes. This makes difficult the simultaneous
existence of collective slow and kink solutions in systems of non-identical threads. Unlike
the case studied by Luna et al. (2009) of cylinders with different densities, collective
normal modes of non-identical tubes are possible when flows are included and the flow
velocities have the appropriate values.

8.3.2 Application to a particular configuration

Next, we assume a particular configuration of two non-identical threads to verify the
argumentation of Section 8.3.1. The thread radii are a1 = 100 km and a2 = 150 km,
whereas their physical properties are T̃1 = 1.5× 104 K, ρ1 = 3.33× 10−11 kg m−3, and
T̃2 = 104 K, ρ2 = 5 × 10−11 kg m−3. The coronal conditions are T̃c = 2 × 106 K and
ρc = 2.5×10−13 kg m−3. The magnetic field strength is 5 G everywhere and the distance
between the thread centers is d = 400 km. We assume v1 = 10 km s−1.

For the above parameters, four kink solutions are also present, which are grouped
in two almost degenerate couples, i.e., the low- and high-frequency kink solutions of
Van Doorsselaere et al. (2008). The frequency of the backward kink waves as a func-
tion of v2 is displayed in Figure 8.9. At first sight, we see that solutions couple for a
particular value of v2, as expected. Applying Equation (8.29), and taking into account
that vA1 = 77.29 km s−1 and vA2 = 63.08 km s−1, we obtain v1 − v2 ≈ ±20.10 km s−1,
and since v1 = −10 km s−1, we get v2 ≈ 10.10 km s−1 for backward waves. We see
that the approximate value of v2 obtained from Equation (8.29) is in good agreement
with Figure 8.9. In addition, we obtain that, for backward propagation, collective dy-
namics appear in a situation of counter-streaming, i.e., opposite flows. This result is
of special relevance because counter-streaming flows have been detected in prominences
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Figure 8.9: Ratio of the frequency of the backward kink modes of non-identical threads
to the individual kink frequency of the first thread, ωk1, as a function of v2 for v1 =
−10 km s−1. The meaning of the solid and dashed lines is given within the Figure.
The dotted lines correspond to the Doppler-shifted individual kink frequencies of the
threads, Ωk1 and Ωk2, respectively.

(e.g. Zirker et al. 1998; Lin et al. 2003) and might play a crucial role in the collective
behavior of oscillations. On the contrary, in the forward propagation case we obtain
v2 ≈ −30.10 km s−1 from Equation (8.29), meaning that both flows are in the same
direction and quite a large value of v2 is obtained in comparison with the backward
propagation case.

Regarding slow modes, taking into account that cs1 = 14.40 km s−1 and cs2 =
11.76 km s−1, Equation (8.30) gives v2 ≈ −12.64 km s−1 for forward slow waves and
v2 ≈ −7.36 km s−1 for backward slow waves. Note that in our particular example the
flow velocities needed for the coupling situation are realistic and within the range of
typically observed velocities. However, if threads with very different physical properties
and, therefore, with very different Alfvén and sound speeds are considered, the coupling
flow velocities could be larger than the observed values. This means that the conditions
necessary for collective oscillations of systems of threads with very different temperatures
and/or densities may not be realistic in the context of solar prominences.

8.4 Conclusion

In this Chapter, we have assessed the effect of mass flows on the collective behavior
of slow and kink wave modes in systems of prominence threads. We have seen that
the relation between the individual Alfvén (sound) speed of the threads is the relevant
parameter which determines whether the behavior of kink (slow) modes is collective
or individual. In the absence of flows and when the Alfvén speeds of the threads are
similar, kink modes are of collective type. On the contrary, perturbations are confined
within an individual thread if the Alfvén speeds differ. In the case of slow modes,
the conclusion is equivalent but replacing the Alfvén speeds by the sound speeds of
the threads. On the other hand, when flows are present in the equilibrium, one can
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find again collective motions even in systems of non-identical threads by considering
appropriate flow velocities. These velocities are within the observed values when threads
with not too different temperatures and densities are assumed. However, since the flow
velocities required for collective oscillations must take very particular values, such a
special situation may rarely occur in prominences.

Therefore, if coherent oscillations of groups of threads are observed in prominences
(e.g., Lin et al. 2007), our results allow us to conclude that either the physical properties
and flow velocities of all oscillating threads are quite similar or, if they have different
properties, that the flow velocities in the threads are the appropriate ones to allow for
collective motions. From our point of view, the first option is the most probable one
since the flow velocities required in the second case correspond to a very peculiar situ-
ation. This conclusion has important repercussions for future prominence seismological
applications, because if collective oscillations are observed in large areas of a promi-
nence, the threads in such regions should possess very similar temperatures, densities,
and magnetic field strengths.

Here, we have only considered two-thread systems, but the method can be applied to
an arbitrary multi-thread configuration similar to that studied by Luna et al. (2010) in
the context of multi-stranded coronal loops. Luna et al. (2010) found that in an arbitrary
system of several cylinders, the oscillatory frequencies of the collective transverse modes
can be always classified into three groups: the low, mid, and high modes. In a two-
cylinder configuration, the Sx and Ay solutions are low modes, whereas the Ax and Sy

solutions are high modes. The mid modes in a two-cylinder system correspond to the
rest of collective transverse modes governed by larger values of m, i.e., fluting modes.
Hence, the results obtained here for two threads can be generalized to an arbitrary
configuration.
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9
Damping of Collective Magnetohydrodynamic
Waves in Two Cylindrical Filament Threads∗

Here, we extend the results of Chapter 8 by considering the presence of damping
mechanisms. From the studies of wave damping in isolated filament threads performed
in the previous Chapters of this thesis, we have determined that non-adiabatic effects
for slow modes and resonant absorption for kink modes are the most efficient damping
mechanisms. Here, we investigate these two effects on the attenuation of the collective
modes of a two-thread configuration.

Section 9.1 contains a description of the model configuration and the expression of
the T-matrix elements that apply to the present case. Then, we study the damping
of the collective modes of two filament threads by non-adiabatic effects (Sec. 9.2) and
resonant absorption (Sec. 9.3). Finally, Section 9.4 contains the main conclusions of this
Chapter.

9.1 Model and method

9.1.1 Equilibrium

The present equilibrium configuration is similar to that considered in Chapter 8, i.e.,
two homogeneous and unlimited parallel cylinders, representing prominence threads,
embedded in an also homogeneous and unbounded coronal medium (see Fig 8.1). The
meaning of all the quantities and expressions is also the same as in Chapter 8. The
difference between the present equilibrium and that of Chapter 8 is that thin transitional
layers (TTLs) between the cylindrical threads and the external corona are taken into
account. The transitional layers are thin in comparison with the thread mean radius.
Figure 9.1 displays a cut of the model at z = 0. In addition, here we consider the
presence of non-adiabatic terms, i.e, radiative losses and thermal conduction, in the
energy equation, using the same formalism as in Chapter 4. Therefore, the reader is
referred to that Chapter for a more detailed explanation. For simplicity, and since the
effect of flows was assessed in Chapter 8, we consider no flows in the equilibrium.

∗This Chapter is based on the results of R. Soler, R. Oliver, & J. L. Ballester 2009, Propagation of
Nonadiabatic Magnetoacoustic Waves in a Threaded Prominence With Mass Flows, ApJ, 693, 1601, and
R. Soler, I. Arregui, R. Oliver, & J. L. Ballester 2010, in preparation
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Figure 9.1: Cut in the xy-plane of the configuration of two parallel cylindrical filament
threads with thin transitional layers.

9.1.2 Basic equations

To find the normal mode frequencies we consider again the T-matrix theory of scat-
tering. The method is identical to that explained in Section 8.1.2. The only differences
are in the definitions of the T-matrix elements, T j

mm, and the radial wavenumbers, mj

and mc, since now they have to include the effect of the non-adiabatic mechanisms
and the resonant absorption at the TTLs. Also note that since there are no flows,
the Doppler-shifted frequencies, Ωj and Ωc, simply become the oscillatory frequency,
ω. Because of the presence of both non-adiabatic effects and resonant absorption, the
collective normal mode frequencies are complex quantities, namely ω = ωR + iωI. With
no loss of generality, we restrict ourselves to modes with ωR > 0, i.e., forward waves.

As explained in Chapter 4, non-adiabatic effects can be easily included by consid-
ering the so-called non-adiabatic sound speed, Λ (see Eq. [4.6]), which replaces the
adiabatic sound speed, cs, in the equations. Hence, the non-adiabatic versions of the
radial wavenumbers mj and mc, namely m̃j and m̃c, respectively, are defined as

m̃2
j =

(
ω2 − k2

zv
2
Aj

)(
ω2 − k2

zΛ
2
j

)
(
v2
Aj + Λ2

j

)(
ω2 − k2

z c̃
2
Tj

) , m̃2
c =

(
ω2 − k2

zv
2
Ac

) (
ω2 − k2

zΛ
2
c

)(
v2
Ac + Λ2

c

) (
ω2 − k2

z c̃
2
Tc

) . �� ��9.1

On the other hand, the effect of resonant absorption at the TTL is incorporated
here by combining the jump conditions at the resonance with the thin boundary (TB)
approximation. Extensive details about this technique are provided in Chapter 6. In
the light of the minor contribution to the attenuation of the slow resonance compared to
that of the Alfvén resonance found in Section 6.1, the first one is neglected and only the
second one is taken into account. The jump conditions at the Alfvén resonance point for
the radial displacement and the total pressure perturbation are given in Equation (6.7).
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In the TB approach, these jump conditions replace the boundary conditions, namely
[[ξr]] = [[pT1 ]] = 0 at |~r − ~rj| = aj, used to compute the T-matrix elements in the case
without transitional layers. The T-matrix theory of scattering along with the formalism
of the TB has been previously used to investigate resonant absorption in sunspot fibrils
with TTLs (Keppens et al. 1994; Keppens 1995, 1996). Thus, the T-matrix elements in
the non-adiabatic case with TTLs take the following form,

T j
mm =

m̃cρj

(
ω2 − k2

zv
2
Aj

)
J ′

m(m̃caj)
J ′

m(m̃jaj)
− m̃jρc

(
ω2 − k2

zv
2
Ac

) Jm(m̃caj)
Jm(m̃jaj)

· · ·

m̃cρj

(
ω2 − k2

zv
2
Aj

)
H′(1)

m (m̃caj)
J ′

m(m̃jaj)
− m̃jρc

(
ω2 − k2

zv
2
Ac

) H
(1)
m (m̃caj)

Jm(m̃jaj)
· · ·
· · ·

· · ·
· · ·+ iπ

m2/rAj

|ρ0∆Aj|rAj

ρjρc
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,
�� ��9.2

with rAj the resonant position at the TTL of the j-th thread, ∆Aj = d
dr

[
ω2 − ω2

A (r)
]
j
,

and the parameter δjm defined as

δjm =
{

1, if ωAj < ωR < ωAc,
0, otherwise.

�� ��9.3

With the parameter δjm we make sure that the term related to the Alfvén resonance
does not contribute when the real part of the normal mode frequency is outside the
Alfvén continuum of the j-th thread. In addition, by fixing δjm = 0 for a particular value
of m, we can omit resonant absorption for that particular multipole. Such as happens
with the T-matrix elements of a homogeneous tube (Eq. [8.19]), the denominator of
Equation (9.2) corresponds to the dispersion relation of a single tube with a TTL (see,
e.g., Van Doorsselaere et al. 2004).

Equation (9.2) is a general expression for any given density profile in the transitional
layers. For simplicity, we assume that all the TTLs have a sinusoidal density profile
(Eq. [6.1]), thus

|ρ0∆Aj|rAj
= ω2

R

(
ρj − ρc

lj

)
π

2
cos
[
π

lj
(rAj − aj)

]
,

�� ��9.4

where lj is the TTL thickness of the j-th thread, and rAj is now given by Equation (6.5),
which depends on ωR. The condition of thin layers implies lj/aj � 1. Here, this
condition is relaxed since the accuracy of the TB approach is still reasonably good when
the restriction lj/aj � 1 is not fully verified but lj remains smaller than the thread mean
radius, i.e., lj/aj < 1 (Van Doorsselaere et al. 2004).

The complex oscillatory frequency is obtained from the non-trivial solution of an
algebraic system equivalent to that given by Equation (8.16). However, note that the
value of ωR is previously needed to compute rAj and δjm. We therefore use a two-
step procedure. First, we solve the system in the case without TTLs, i.e, for δjm = 0
for all j and m, and obtain ωR. We assume that the real part of the frequency is
approximately the same when the TTLs are included, allowing us to determine both rA
and δjm. Subsequently, we solve the full system with these parameters, obtaining the
actual ωR and ωI.
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9.2 Damping by non-adiabatic effects

First, we study the damping exclusively due to non-adiabatic mechanisms. There-
fore, we do not take into account the presence of the TTLs and fix δ1m = δ2m = 0 for
all values of m. We consider identical threads, with T̃1 = T̃2 = 104 K, ρ1 = ρ2 =
5 × 10−11 kg m−3, and a1 = a2 = a = 100 km. The coronal effective temperature and
density are T̃c = 106 K and ρc = 2.5 × 10−13 kg m−3, respectively, while the magnetic
field strength is B0 = 5 G. We assume the Prominence (2) radiation regime for the
prominence plasma (see Table 2.1), while the corona is assumed to be optically thin.
The results for other prominence radiation regimes are not included here because all of
them show a similar behavior. A constant heating per unit volume is included.

Figure 9.2a shows the ratio of the damping time to the period, τD/P , of the collective
Sx, Ax, Sy, and Ay kink modes as a function of the distance between threads, d/a, for
kza = 10−2. We see that the damping times are between 5 and 7 orders of magnitude
larger than their corresponding periods. Hence, as in the case of individual kink modes
(see Chap. 4), dissipation by non-adiabatic mechanisms is not efficient enough to obtain
realistic values of τD/P of transverse thread oscillations. To shed light on the behavior of
the kink modes damping ratio with the separation between threads, we plot in Figure 9.3
the dimensionless imaginary part of the frequency, ωIτA, with τA = a/vAf the internal
Alfvén travel time, versus d/a. The equivalent values of ωR are not displayed for the sake
of simplicity, because they are almost the same shown in Figure 8.4a for the adiabatic
case. A comparison between Figures 9.2a and 9.3 shows that the behavior of the damping
ratio is mainly governed by the imaginary part of the frequency.

Regarding slow modes, Figure 9.2b shows τD/P corresponding to the Sz and Az

solutions versus d/a. One can see that both collective slow modes are efficiently at-
tenuated by non-adiabatic mechanisms, with τD/P ≈ 5, which is comparable to the
results of individual slow modes. Both the real and imaginary parts of the frequency
(not displayed here) show very little dependence on the distance between threads, and
so the slow modes damping ratio is almost independent of d/a.

We have checked that the dependence of the damping time with kza is equivalent to
that shown in Figures 4.4b and 4.5a for individual oscillations, i.e., radiative losses from
the prominence plasma in the case of slow modes and coronal thermal conduction in
the case of kink modes dominate the damping for relevant values of kza. We have also
performed similar computations but considering non-identical threads. In such a case,
the collective normal modes become, in practice, individual modes of one of the two
threads. Then, the damping times are the same obtained in Chapter 4 for oscillations of
individual threads. We therefore conclude that the efficiency of non-adiabatic effects as
damping mechanisms for collective modes is not substantially modified in comparison
with the individual oscillations for neither identical nor non-identical threads.

9.3 Damping by resonant absorption

Here, we consider the presence of the TTLs between the filament threads and the
corona. Also, the presence of non-adiabatic effects is retained in the equations. Now,
kink modes are damped by resonant absorption in the Alfvén continuum. On the con-
trary, the frequencies of both the Sz and Az slow modes are outside the Alfvén continua,
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Figure 9.2: Results of the damping by non-adiabatic effects in the case of identical
threads. Ratio of the damping time to the period, τD/P , of the collective (a) kink
modes and (b) slow modes versus the normalized distance between threads, d/a. In
both cases kza = 10−2. The different lines are labeled within the Figure.
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Figure 9.3: Absolute value of the dimensionless imaginary part of the frequency, ωIτA, of
the non-adiabatic collective kink modes versus the normalized distance between threads,
d/a, with kza = 10−2. The different line styles and symbols are labeled within the
Figure.

meaning that these modes are not resonantly coupled to Alfvén continuum modes and,
therefore, not damped by resonant absorption. The slow modes damping times in the
presence of TTLs are the same as those obtained for homogeneous tubes, i.e., the damp-
ing is exclusively due to non-adiabatic effects. For this reason, we focus our next study
on kink modes.

In this Section we consider the value kza = 10−1 of the dimensionless longitudinal
wavenumber. We use a larger value of kza with respect to the previous Sections because
the numerical method used to solve the system given by Equation (8.16) does not provide
a good convergence of the solution when the full expression of the T-matrix elements
is taken into account (Eq. [9.2]) and the longitudinal wavenumber is very small. We
have to take a large number of terms in Equation (8.16), i.e., a very large truncation
number, to obtain an accurate enough frequency when kza < 10−1, which significantly
increases the computational effort. For this reason, we take a larger kza and so a smaller
number of terms in Equation (8.16). To make sure that the results for kza = 10−1 can
be compared to those of the previous Sections, we have studied the dependence of the
results on kza for a particular set of parameters (see further details in Figure 9.6a), and
have obtained that τD/P becomes independent of kza for kza < 10−1.

9.3.1 Identical threads

First, we take into account the case of two identical threads. The physical conditions
are the same considered in Section 9.2. Figure 9.4a displays the dimensionless imaginary
part of the frequency of the collective kink modes as a function of the distance between
the filament threads, while Figure 9.4b shows the corresponding ratio of the damping
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Figure 9.4: Damping of the collective kink modes by resonant absorption in the case
of identical threads. (a) Absolute value of the dimensionless imaginary part of the
frequency, ωIτA, versus the normalized distance between threads, d/a, for l/a = 0.1. (b)
Corresponding ratio of the damping time to the period, τD/P . In both cases kza = 10−1.
The different line styles and symbols are labeled within the Figure.
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Figure 9.5: Ratio of the damping time to the period, τD/P , versus the transitional layer
thickness, l/a, for two identical threads with d/a = 3 and kza = 10−1. The different
line styles and symbols are labeled within the Figure.

time to the period. The dependence of the real part of the frequency with the distance
between threads is the same as in the case l/a = 0 (see Fig. 8.4a) and, again for
simplicity, is not displayed here. The dependence of ωI with the separation between
threads is stronger than the dependence of ωR, so that the behavior of τD/P with the
separation is mainly governed by ωI. By comparing the vertical axes of Figures 9.4b
and Figure 9.2b, one can see the expected result that resonant absorption is much more
efficient than non-adiabatic mechanisms for the damping of kink modes. The value of
τD/P of the four kink solutions tends to the value of an isolated cylinder when the
distance between their axes is large. For intermediate separations, the damping ratio
of low-frequency (Sx and Ay) kink modes is almost independent of d and close to the
value of individual kink oscillations, while τD/P increases for very small separations. In
the case of high-frequency (Ax and Sy) kink modes, their τD/P continuously decreases
as the two threads become closer. Note the very efficient attenuation of these solutions
for small separations, with the damping ratio of the Ax and Sy modes almost an order
of magnitude smaller than that of the Sx and Ay solutions.

In Figure 9.5 we see the dependence of τD/P on the transitional layer thickness.
As expected, the value of τD/P of the four kink solutions decreases as l/a grows. This
behavior is identical to that of the individual kink oscillation and fully consistent with
a damping by resonant absorption.

Next, Figure 9.6a displays the dependence of τD/P on kza. It is interesting to
compare Figure 9.6a with Figure 6.4a, corresponding to the individual kink mode. For
small and realistic values of kza, i.e., kza < 10−1, the damping ratio of the four kink
solutions is independent of kza. As kza is increased, the damping ratio of both the Sx

and Ay solutions increases, following a similar behavior to that of the individual kink
mode (Fig. 6.4a). On the contrary, the damping ratio of the Ax and Sy modes first
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Figure 9.6: Damping of the collective kink modes by resonant absorption in the case
of two identical threads. (a) Ratio of the damping time to the period, τD/P , versus
kza for l/a = 0.1 and d/a = 3. (b) Particular contribution of the first multipoles m to
τD/P for l/a = 0.1, d/a = 3, and kza = 10−1. The different line styles and symbols
are labeled within the Figure. The grey area in panel (a) corresponds to the range of
realistic values of the parameter kza.
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slightly decreases and later increases again as kza becomes larger. We can also see that,
such as happens for the real part of the frequency (see Van Doorsselaere et al. 2008),
the Sx and Ay modes have an almost identical τD/P for kza � 1, whereas the same
applies for the Ax and Sy solutions. Far from the thin tube limit, the four solutions
have different damping ratios.

The present results indicate that, regarding the damping by resonant absorption,
the low-frequency (Sx and Ay) modes behave more similarly to the individual kink
mode than the high-frequency (Ax and Sy) solutions. To shed light on this result, let
us consider the particular contribution of each multipole m to the resonant damping.
To do so, we fix δjm = 0 except for those m whose particular contribution we want to
assess, and compute the damping ratio in each case. Figure 9.6b shows the result of
these computations. As expected for kink-like oscillations, the dominant multipole for
all solutions is |m| = 1. We can see that, when a particular m is selected, the damping
ratio of the Ax and Sy modes is smaller than that of the Sx and Ay modes. For this
reason, the total damping ratio of the former is smaller than that of the latter.

To explain the reason that makes the Ax and Sy modes more damped than the Sx and
Ay modes let us take into account the results by Arregui et al. (2007b). These authors
numerically studied the damping of the transverse fundamental (symmetric) mode of two
slabs with transitional layers in Cartesian geometry. They found that, although both
the real and imaginary parts of the frequency are affected by the separation between the
two slabs, this parameter has little effect on the damping ratio. In particular, Arregui
et al. (2007b) related the efficiency of the attenuation to the magnitude of the total
pressure perturbation within the transitional layers. According to Andries et al. (2000),
the efficiency of the resonant coupling between the global transverse mode and Alfvén
continuum modes is given by the jump of the radial energy flux across the dissipative
layer. In the case of an isolated cylinder, Andries et al. (2000) provide an approximate
expression for the jump of the radial energy flux, [[Sr]], which in our present notation is

[[Sr]] ≈
π

2
e2ωItωR

m2/a2

|ρ0∆A|rA

p2
T1
, at r = rA.

�� ��9.5

The larger [[Sr]], the more energy from the global mode is deposited in the dissipative
layer, and so the more damped is the global mode. When a system of several cylinders is
taken into account, we expect that the dependence of [[Sr]] with pT1 in the resonant layer
of each cylinder is similar to that given by Equation (9.5). Thus, one can reasonably
assume that the efficiency of resonant absorption for the damping of a collective mode
is proportional to [[Sr]], and so proportional to p2

T1
at the resonance positions, meaning

that the larger the total pressure perturbation in the dissipative layers, the more efficient
resonant absorption. In order to check this last statement, we plot in Figure 9.7 the
normalized value of p2

T1
in the xy-plane corresponding to the Sx (panel a) and Ax (panel

b) modes. These results correspond to the case l/a = 0 because the TB approach only
provides us with information about the frequency, but the form of the perturbations in
the inhomogenous layer cannot be obtained with this formalism. A numerical integration
of the resistive MHD equations is needed to obtain the pertubations in the transitional
layers. However, since the total pressure perturbation is constant across the dissipative
layer, we expect p2

T1
to be approximately the same when l/a 6= 0. To better compare

the two panels of Figure 9.7, we display in Figure 9.8 a cut of p2
T1

along the direction
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that connects the axes of the two cylinders. For the two modes, the maximum value of
p2
T1

takes place in this cut. We see that p2
T1

of the Ax mode reaches a larger value in the
transitional layers than that of the Sx solution. This result qualitatively explains why
the Ax mode is more damped than the Sx solution. Equivalently, a similar conclusion
allows us to understand the different attenuation of the Sy and Ay solutions. An in-
depth study of the process of resonant absorption in two-dimensional configurations (see
Russell & Wright 2010) is needed for a more robust explanation of the different damping
rates of the four kink solutions.

Finally, Figure 9.9 allows us to study in-depth the dependence on the thickness of
the transitional layers. Figure 9.9 shows τD/P versus l2/a when l1/a = 0.1. We see that
even when l2/a = 0, so that there is no Alfvén resonance in the second thread, we obtain
quite an efficient damping of the four kink solutions. By comparing Figures 9.5 and 9.9
we see that the values of τD/P obtained when l2/a = 0 are not substantially larger
than those of the case l1/a = l2/a. In particular, there is a factor 2, approximately,
between the value of τD/P in the case l1/a = 0.1 and l2/a = 0, and that in the case
l1/a = l2/a = 0.1. This means that a resonance in the transitional layer of one of the
two threads is enough to efficiently damp a collective mode.

9.3.2 Non-identical threads

Here, we consider the case of two non-identical threads. We perform a parametric
study based on the values of the densities and the thickness of the transitional layers.
We assume kza = 10−1 in the following computations, and the radii of both threads are
set equal for simplicity, i.e., a1 = a2 = a. As pointed out by Luna et al. (2009), the use
of Sx, Ax, Sy, and Ay to denote the four kink modes in a system of two non-identical
cylinders is not strictly correct since, in such a case, the total pressure and velocity
perturbations can be significantly different in both cylinders. However, we keep here
this notation for the sake of simplicity and denote the four solutions according to their
behavior in a system with identical densities.

First, we fix ρ1 = 5×10−11 kg m−3 and study the dependence of the frequency on ρ2.
For this computation we consider l1/a = l2/a = 0.1. Figure 9.10a shows the real part
of the frequency of the four kink modes as a function of ρ2. This result is equivalent to
that of Luna et al. (2009), i.e., the collective modes become the individual modes of each
thread when different densities are considered. In particular, for ρ2 < ρ1 the Sx and
Ay modes are related to the kink oscillations of the first thread because the real part of
their frequency coincides with the kink frequency of the first thread. On the contrary,
the Ax and Sy solutions correspond to kink motions of the second thread. This behavior
is the opposite one for ρ2 > ρ1. It is also worth noting that the low-frequency (Sx and
Ay) modes can be below the internal cut-off frequencies of one of the two threads. By
approximating ω2

kj ≈ 2ω2
Aj, one easily obtains that the low-frequency solutions are below

ωA2 for ρ2/ρ1 . 1/2, whereas they are below ωA1 for ρ2/ρ1 & 2. This means that the
frequency of the Sx and Ay modes is only within the Alfvén continua of both threads
for 1/2 . ρ2/ρ1 . 2. On the contrary, the high-frequency (Ax and Sy) solutions are
always within both continua.

On the other hand, Figure 9.10b displays the corresponding values of τD/P . We see
that the value of τD/P of the Sx and Ay modes shows little dependence on ρ2/ρ1. Even
when the frequency of these modes falls outside one of the two continua, the value of
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Figure 9.7: Total pressure perturbation squared (contour plot) plotted in the xy-plane
corresponding to the wave modes (a) Sx and (b) Ax for d = 4a and kza = 10−1. The
dotted circles denote the location of the undisturbed threads. Normalized arbitrary
units have been used and the maximum of p2

T1
of the Ax mode has been set as reference

(unity).

Figure 9.8: Cut at y = 0, z = 0 of the total pressure perturbation squared, p2
T1

,
displayed in Figure 9.7. The grey zones denote the location of the homogeneous part of
the threads, while the brown regions correspond to the transitional layers. Normalized
arbitrary units have been used and the maximum of p2

T1
of the Ax mode has been set

as reference (unity).
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Figure 9.9: Ratio of the damping time to the period, τD/P , of the collective kink modes
versus l2/a. In all computations, l1/a = 0.1, d/a = 3, kza = 10−1 and ρ1/ρc = ρ2/ρc =
200. The different line styles are labeled within the Figure.

τD/P is not substantially modified. Regarding the Ax and Sy modes, we can see that
their τD/P is more affected by the value of ρ2/ρ1. For these two modes, the minimum
of τD/P occurs for ρ2/ρ1 ≈ 1. The real part of the frequency of the Ax and Sy modes
is always within the Alfvén continua of both threads for all values of ρ2/ρ1, so both
resonances contribute to the damping of these solutions.

9.4 Conclusions

In this Chapter, we have studied the damping of collective modes in a system of two
cylindrical filament threads. Non-adiabatic effects and resonant absorption have been
considered as damping mechanisms. In agreement with previous studies on the damping
of individual modes, we have obtained that collective slow modes are efficiently damped
by non-adiabatic effects, in particular by radiative losses, and collective kink modes are
strongly attenuated by resonant absorption in the Alfvén continuum. In both cases, the
computed τD/P are consistent with the values reported in the literature.

For slow modes, the values of the damping times of the collective modes are very
similar to those of the individual modes, meaning that the collective character of the
oscillation does not have, in general, a strong influence on the attenuation by non-
adiabatic effects. In the case of kink modes, the interaction between neighboring threads
causes a shift of the value of τD/P in comparison with the individual kink oscillation of
an isolated thread damped by resonant absorption. This is specially noticeable for the
Ax and Sy solutions, which are more strongly damped than the other collective kink
modes and than the individual kink oscillation. An interesting result is that an efficient
damping of the collective kink modes is still obtained if the collective mode is resonantly
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Figure 9.10: Collective kink modes in the case of two non-identical threads. (a) Real
part of the frequency, in terms of the external Alfvén frequency, versus ρ2/ρ1. (b) Ratio
of the damping time to the period, τD/P , versus ρ2/ρ1. The vertical dot-dashed lines
in panel b correspond to the values of ρ2/ρ1 in which the internal cut-off frequencies of
the threads are reached. In all computations, l1/a = l2/a = 0.1, d/a = 3, kza = 10−1,
and ρ1/ρc = 200. The different line styles are labeled within the Figure. ωA1 and ωA2

correspond to the internal Alfvén frequencies of the first and second threads, respectively.
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coupled to Alfvén continuum modes of one thread only. This situation can take place
when the collective mode frequency is within the Alfvén continuum of one thread only
but the frequency is outside the Alfvén continuum of the other thread, or when the
transitional layer of one specific thread is absent.

Extending our results to an arbitrary system of many threads, we expect the high
modes (according to the notation by Luna et al. 2010) to be very efficiently attenuated,
whereas the low modes may have damping times more similar to that of the individual
kink oscillation. This might cause the contribution of the high modes to the collective
motion of an ensemble of threads to be less important than the contribution of the low
modes, since high modes would probably be quickly damped much before than the low
modes. A detailed study of this issue in future investigations is needed in the context
of both coronal loops and prominence threads.
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Concluding remarks

In this thesis, we have investigated some physical mechanisms that may be of rele-
vance for the damping of oscillations in prominence fine structures. Among the effects
studied here, resonant absorption for kink modes and the combined effect of radiation
losses and ion-neutral collisions for slow modes can provide values of the ratio of the
damping time to the period, τD/P , compatible with those observed. On the other hand,
magnetic diffusion and thermal conduction turn out to be irrelevant for the damping of
both transverse and longitudinal thread oscillations. The efficiency of other possible dis-
sipative mechanisms not studied here as, e.g., viscosity, can be easily estimated by means
of order-of-magnitude calculations (see Ballai 2003). One obtains that, in prominence
conditions, viscosity is much less efficient than any other mechanism studied here.

On the other hand, some additional effects have also been investigated as, e.g.,
the influence of mass flows, the collective behavior of groups of oscillating threads,
and the effect of the longitudinal inhomogeneity of the fine structure. In the case of
individual oscillations, we find that the main influence of mass flows is to shift the
value of the real part of the frequency, and so only the period is affected. For realistic
flow velocities, this effect can be of importance for slow waves, since they are forced
to propagate in the flow direction. Regarding collective oscillations, we obtain that
the dominant damping mechanisms are the same as for individual thread oscillations,
meaning that the collective behavior of motions does not affect the damping of the
oscillations. However, the presence of flows is very relevant for the collective behavior
of the oscillations, since only particular values of the flow velocities allow for collective
motions, i.e., those velocities that cause the individual Doppler shifted frequencies of
the threads to be the same. Finally, the observational evidence that in a fine structure
the prominence material only occupies a part of the whole magnetic flux tube has also
been taken into account. In the case of the kink mode damping by resonant absorption
and ion-neutral collisions, we find that the main conclusions obtained for a homogeneous
magnetic cylinder remain valid in the case of a partially filled tube because the kink
mode behavior is mainly governed by the physical conditions of the dense part of the
tube.

Future work

We are aware that the filament thread models assumed here are simple and may
be subjected to some criticism. For example, we have studied perturbations from an
equilibrium whose properties are constant in time. Observations from the Hinode space-
craft (e.g., Okamoto et al. 2007; Berger et al. 2008) show a highly dynamic prominence
medium, and it is likely that the properties of the threads may vary in time-scales
comparable to the oscillatory periods. For this reason, studies similar to those of As-
chwanden & Terradas (2008), Erdélyi et al. (2008), and Morton & Erdélyi (2009), which
take into account a changing background medium in the context of coronal loops, should
be extended to prominences in the near future.

In addition, the effect of gravity has been also ignored in our investigation. The
inclusion of gravity would complicate matters significantly, since a new equilibrium
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between the gravity force and the magnetic and pressure forces should be found. To our
knowledge, there are no consistent models of filament threads which include the effect
of gravity. To construct such a model is definitely beyond the purpose and scope of
the present thesis. However, on the basis of the results of McEwan & Dı́az (2007), who
studied the effect of gravity in a coronal slab by ignoring its influence on the equilibrium
and only considering its effect on the perturbations, we might anticipate that gravity
would have a very minor influence on the periods of an oscillating thread.

There is still much work to do in the field of prominence oscillations and their damp-
ing. Our contribution in this thesis has been to identify the important mechanisms and
effects that must be investigated in more detail in the future. For example, we could go
beyond the normal mode analysis and study the time-depended problem of impulsively
generated oscillations in both isolated threads and bundles of threads. Another issue of
special interest is to take into account the effect of ionization and recombination of the
plasma species, which could affect the time evolution of the plasma ionization degree.
On the other hand, the coupling and interaction between photospheric/chromospheric
oscillations and prominence oscillations might be the subject of forthcoming investiga-
tions. Finally, the construction of complex three-dimensional models of prominences
and their fine structures and the study of their stability properties are also issues of
great interest.
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Erdélyi, R., Goossens, M., & Ruderman, M. S. 1995, Sol. Phys., 161, 123
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